
AD-ft26 921 DISTRIBUTED'DECISION MAKING ENVIRONMENT(U) ADVANCED 1/2, N
INFORMATION AND DECISION SYSTEMS MOUNTAIN YIERd CA

U CLR_ J M ABRAM ET AL. DEC 82 RRDC-TR-82-3±B F30962-Si-C-8210

I7CREhhhhhhh5/1hhE

.. ,-.-. . . :-. .4* . .*

I I-

1.0
6 32.2

:.... - 13

U _ 1. 20 ,

III2 5. u.1H1 -iiai

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-I963-A

L

m . .

S -

RADC-TR-82-3 10
interim Report
December 1962

o DISTRIBUTDECSO MAKING
ENVIRONMENT

Advanced Information & Decision Systems

J. M. Abram. C. Y. Chong, V. 0. Rutenburg. E. Tse and R. P. Wishner

DT1C
EECTE
MR2 41983

APPROVED FOR PUBIC RUNMS DISTRIBUTIOM UNIMITED

* D
This effort was funded totally by the Laboratory Directors' Fund

* ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441

_____------ - ."---"-- .-- - " *. . " -•'- -

This report has been reviewed by the RADC Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS it will
be releasable to the general public, Including foreign nations.

RADC-TR-82-310 has been reviewed and is approved for publication.

APPROVED:

RAYMOND A. LIUZZI
fl Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF

Chief, Command and Control Division

FOR THE COWMANDER:

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COTD) Griffiss APB NY 13441. This will assist us in
maintaining a current mailing list.
Do not return copies of this report unless contractual obligations or notices

on a specific document requires that it be returned.

UNCLASSIFIED1.
SECURITY CLASSIFICATION OF THIS PACE (when Dssa EntoedI __________________

REPORT DOCUMENTA TION PAGE BEFORECOPEIGFR
1. REPOT NUMB. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (And Subti) S. TYPIE OF REPORT II PERIOD COVERED ~

DISTRIBUTED DECISION MAKING ENVIRONMENT une 1981 - June 1982

I. PERFORMING 014G. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMSER(s)

J.M. bramE. Tse
C..CagR.P. Wishner F30602-81-C-0210

V.G. Rutenburg_____________
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Advanced Information & Decision Systems AE OKUI USR

201 San Antonio Circle, Suite 286
Mountain View CA 94040 _____________

IIL CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COTD) December 1982
13. NUMBER OFPAGES

Griffiss AFB NY 1344116
14 MONITORING AGENCY NAME &ADDRESS(I different from Controflling Office) IS. SECURITY CLASS. (of (him report)

UCLASSIFIED
Same ISo. DECL ASSI F1 CATION/ DOWNGRADING

16, DISTRIBSUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (*I the *&street eitered i Block 20. it different fre. Report)

Same

I0. SUPPLEMENTARY NOTES

RADC Project Engineer: Dr. Raymond A. Liuzzi (COTD)

This effort was funded totally by the Laboratory Directors' Fund

19. KEY WORDS (Continue on roere side Ifioi ,irycenvad identity by block numnber)

Decision Making Resource AllocationS
Design Methodology Interactive Planning
Decentralized Control Human Decision Making
Distributed Systems
Distributed Artificial Intellig~ence
20. ABSTRACT (Continue on reverse side it necesary and Identify by block number)

This report provides preliminary results on a distributed decision making
environment. A computer Implemented interactive planning environment is -

described, as are algorithmns for automating decision making for a hypo-
thetical Air Force scenario. A design methodology for structuring
distributed decision making is also discussed.

DD 1473 EDITION OF I NOV 63 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ("onf Date Entered)

IJNCLASSIFIED
suCURIty CLASSIFICATION OF THIS PAOEiIUI, 0490 Eaeot.E)

UNCLASSIFIED
SIECURIT'v CLASSIFICATION OF '= AG~IU7,e Dae Ent*ed)

7.t~

Table of Contents

1. INTRODUCTION 1

1.1 PROJECT STATUS 1
1.2 REPORT ORGANIZATION 2

2. PROBLEM DESCRIPTION 3

2.1 PROBLEM DEFINITION 3
2.2 ADVANTAGES OF DISTRIBUTED APPROACHES 4

2.2.1 Matching the Architecture to the Problem 5
2.2.2 Reliability 5
2.2.3 Modularity 5
2.2.4 Throughput and Response Time 6
2.2.5 Cost 6

2.3 A PLANNING AND CONTROL SCENARIO 6

3. SURVEY OF RELEVANT TECHNOLOGY 8

3.1 DECENTRALIZED MATHEMATICAL METHODS 8 '0
3.1.1 Introduction 8
3.1.2 Issues in Distributed Decision Making 9

3.1.2.1 Introduction 9
3.1.2.2 Advantages of Distributed Decision 10

Making
3.1.2.3 What is Distributed? 10

3.1.3 Decision Theory and Decision Analysis 12
3.1.3.1 Introduction 12
3.1.3.2 Team Decision Theory 15

3.1.3.2.1 Static Teams 17
3.1.3.2.2 Dynamic Teams 18

3.1.3.3 Summary 20
3.1.4 Optimization Theory 21

3.1.4.1 Introduction 21
3.1.4.2 Multilevel ,(Hierarchical) Algorithms 21
3.1.4.3 Distributed Algorithms 25

3.1.4.3.1 Dynamic Programming 25
3.1.4.3.2 Network Problems 29

3.1.4.4 Summary 33
3.1.5 Control Theory 34

3.1.5.1 Introduction 34
3.1.5.2 Decentralized Stochastic Control 34
3.1.5.3 Hierarchical Control 38
3.1.5.4 Multimodel Control 43
3.1.5.5 Summary 44

3.2 REVIEW OF DISTRIBUTED ARTIFICIAL INTELLIGENCE 45
3.2.1 Artificial Intelligence Overview 45
3.2.2 Applicability of Artificfal Intelligence 47

to Decision Making

3.2.3 Distributed Artificial Intelligence: 48
Definition and History

3.2.4 Foundations 50
3.2.5 Architectures 51
3.2.6 Protocols, Languages, and Tools 53
3.2.7 Hypothesis Formation 55
3.2.8 Planning and Control 56
3.2.9 Summary 58

- + < .. - .-%. ._. -, *. ..-.....--._ ..-. . .-..- -.. ,.-.- .-........-..--..--.. ' ...-..-.

4. INTERACTIVE PLANNING 59

4.1 SCENARIO FOR DDM INTERACTIVE PLANNER 59
4.2 THE LOCAL PLANNER 62

4.2.1 Functional Description 62
4.2.2 Example of a DDM Game 64

4.3 DISTRIBUTED INTERACTIVE TESTBED 69
4.3.1 Design of a DDM Testbed 69
4.3.2 Design of Experiments on Distributed 71

Mission Planning

5. AUTOMATED DECISION MAKING TECHNIQUES 76

5.1 SEQUENTIAL ASSIGNMENT 76
5,1.1 Description 76
5.1.2 Example 78

5.2 SEQUENTIAL REASSIGNMENT 78
5.2.1 Description 78
5.2.2 Example 81

5.3 NEGOTIATION ALGORITHMS 81
5.3.1 Description 81
5.3.2 Example 83

5.4 MARGINAL UTILITY 84
5.5 BRANCH-AND-BOUND SEARCH TECHNIQUE 88
5.6 AI MISSION PLANNING SYSTEM 89

5.6.1 Expert Systems 89
5.6.2 Design of an AI Expert System for DDM 90

Mission Planning

6. DESIGN METHODOLOGY 92

6.1 INTRODUCTION 92
6.2 GENERAL DESIGN PROBLEM 92

6.2.1 Design Problem 92
6.2.2 Design Process 94

6.2.2.1 Design Synthesis 96
6.2.2.2 Design Optimization 97
6.2.2.3 Design Evaluation 97
6.2.2.4 Design Selection 98

6.3 DISTRIBUTED DECISION MAKING SYSTEM 100
6.3.1 Design Problem 100

6.3.2 Design Process 105
6.3.2.1 Level 1 Design: Original Problem 106

to Logical Structure
6.3.2.2 Level 2 Design: Logical Structure 110

to Physical Structure
6.4 DESIGN EXAMPLE 112

6.4.1 Design Problem 112
6.4.2 Design Process 112

6.4.2.1 Level 1 Design: Logical Structure 112
6.4.2.2 Level 2 Design: Physical Structure 115
6.4.2.3 Level 3 Design: Detailed Design 120

iii

-I

7. THE ROLE OF THE HUMAN DECISION MAKER 121

*. 7.1 INTRODUCTION 121
7.2 DECISION MAKING PROCESS 122
7.3 PROBLEM ISSUES 124

7.3.1 Distributed Assessment and Evaluation 124
7.3.2 Issue Identification 125
7.3.3 Option Generation 126
7.3.4 Choice Process 126
7.3.5 Implementation, Organizational Structure and 126

Incentive Setting

8. CONCLUSIONS AND FUTURE EFFORT 127

REFERENCES 129

APPENDIX: A DISTRIBUTED RESOURCE ALLOCATION ALGORITHM BASED 140
ON EXTENDED MARGINAL ANALYSIS

1. INTRODUCTION 141

2. PROBLEM STATEMENT 141
3. A TRADING MODEL 142
4. TRADING EQUILIBRIUM AND OPTIMAL ALLOCATION 144
5. A DISTRIBUTED ALGORITHM 152

Acoesston For

NTIS- GRA&I

DTIC TAB
Unannounced O
Justificatio

By
Distribution/

Availability Codes .
Avail and/or,

Dist Special

#4

I.

List of Figures

Figure 3-1: Dynamic Decision Making 9
Figure 3-2: The Decision-Making Process 11
Figure 3-3: Decision Tree 13
Figure 3-4: Sequential Decision Problem 14
Figure 3-5: Multilevel Optimization 22
Figure 3-6: Centralized Control 35
Figure 3-7: Decentralized Control 35
Figure 3-8: Two-level Hierarchical Control System 39
Figure 4-1: Sample Scenario 60
Figure 4-2: High-Level Structure of the Distributed Game 70

Testbed (with two players)
Figure 5-1: Board Configuration for Example 79 -
Figure 5-2: First Assignment Cycle 80
Figure 5-3: Second Assignment Cycle 80

• Figure 5-4: Final Assignments 80
Figure 5-5: Sequential Reassignment Example 82
Figure 5-6: Board Configuration for Example 85
Figure 5-7: Pre-negotiation Assignments 86
Figure 5-8: Post-negotiation Assignments 87
Figure 6-1: Design Problem 93
Figure 6-2: Multilevel Design 94
Figure 6-3: Design Process at Each Level 95
Figure 6-4: Example of a Depth First Search 101
Figure 6-5: Environment of Decision System 102
Figure 6-6: Distributed Decision Making Architecture 104 -
Figure 6-7: Three-level Design . 05
Figure 6-8: Graphical Representation of Task Structure 108
Figure 6-9: Logical Structure 108
Figure 6-10: Functional Decomposition 113
Figure 6-11: Graphical Representation 11.3
Figure 6-12: Task Structure 114

* Figure 6-13: Logical Structures 116
Figure 6-14: Physical Structures . 118
Figure 7-1: Distributed Decision Making Process 123
Figure A-i: Hierarchical Trading Pattern 144

iv

List of Tables

Table 6-1: Comparison of Different Physical Architectures 119

vh

Ri

.,1
¢1

-1

I,

V

K 1. INTRODUCTION

This interim technical report describes the work that AI&DS has performed

for RADC under the contract entitled "Distributed Decision Making

Environment." The prime objectives of this project are to investigate and

develop distributed decision making (DDM) techniques and to develop a design

methodology for decision making in a distributed environment. The remainder

of this section contains a brief status report and a description of the

organization of this report.

1.1 PROJECT STATUS

There are several tasks to be investigated over the course of the

project. To date we have emphasized what we feel to be the two most important

tasks: investigating the technology of distributed decision making and

developing a design methodology.

Our investigation of DDM technology began with a survey of relevant

literature. The two main areas of this survey were distributed mathematical

methods, including decision theory, optimization theory, and control theory;

and distributed artificial intelligence.

The investigation continued with the development of several decentralized

algorithms for use on a missile assignment scenario. A sequential assignment

algorithm has been fully computer implemented and preliminary experiments with

it have been run. An improvement on that algorithm, sequential reassignment,

was developed but has not been implemented. A missile negotiation algorithm,

in which automated decision makers bargain for resources, was also developed

and implemented. Several other algorithms are currently in the development

stage.

A related topic of research is our interactive planning simulation. Here

we are developing a decision support system to aid human decision makers. The

context is a distributed missile assignment problem. In this problem a

distributed set of platforms are to assign their onboard missiles to targets.

To date, we have developed the initial software for a single human decision

maker. The next task is to enhance the useability of the system, followed by

the implementation of a distributed version in which several humans can

participate in experiments simultaneously. The distributed version will allow

L1

us to study distributed human decision making and should lead to some new

ideas for automating decision making, particularly from an artificial

intelligence point of view.

We have spent some time trying to develop an Al solution to the

distributed missile assignment problem. The approach that we are considering

*i has a hierarchical decision structure, where decisions are made based on

expertise stored in a knowledge base and on a set of heuristic rules. The

expertise and rules will be garnered from in-house "experts" who have used the

interactive planner.

As to the design methodology task, an initial desi, ias described in the

project proposal. This methodology served as the model our preliminary

work on the design issue. At this point, we feel that, e identified the

basic steps that must be performed in the design process. These steps take

the user through successive levels of detail of design until the entire

decision making structure has been defined. The number of levels is problem-

dependent, but often three levels suffice: logical structure, physical

structure, and detailed design.

We have also gained some insight into the question of how to generate

structures within any given level of design. This process requires synthesis,

optimization of parameters, evaluation, and selection. We believe that this

is a process that should be performed by an interactive system, with a human

playing the major role while being supported strongly by computer aided design

tools.

1.2 REPORT ORGANIZATION

The report is organized as follows. Section 2 describes the DDM problem

and the main scenario that we have worked with. Relevant literature in the

areas of decentralized mathematical techniques and distributed artificial

intelligence is surveyed in Section 3. In Section 4 we describe our

* interactive decision making simulation. Section 5 deals with a variety of

automated decision making techniques that we have developed for the scenario

under consideration. The design methodology is discussed in Section 6. In

Section 7 we deal with the issue of human decision making. Section 8 contains

* conclusions. The appendix describes in great detail a marginal analysis

algorithm that we have developed.

2

L

-2. PROBLEM DESCRIPTION

2.1 PRCBLEM DEFINITION

Decision making is required in a wide variety of tasks in the Air Force,

including mission planning, situation assessment, air defense and logistics,

to name a few. It is often necessary or desirable to divide the decision

making task among several human or automated decision makers, rather than use

a centralized design.
lot

The problem addressed by this project is that of developing technology

and a design methodology for distributed decision making. This development is

being done in the context of Air Force tactical C3 problems. In particular,

we have focused on planning and control problems within C3, rather than other

decision making problems such as situation assessment.

A wide variety of technologies can be applied to DDM problems; these

include control theory, operations research, decision theory, large-scale

systems theory, artificial intelligence, and decision support systems. The

relevant technology also includes many distributed system architecture ideas,

including node-level special-purpose hardware architectures (e.g., peripheral

computers dedicated to signal processing or track.nf,) and communication net

works and protocols. The understar'ding of human roles, whether individual or

group, and the method and point of interfacing the human to the distributed

system is an important technology issue. Finally, methods for distributing

and maintaining data to support the DDM process is a relevant technology

issue.

The types of distributed systems of interest are quite diverse. Both

strongly distributed systems (no nierarchy) and weakly distributed systems

(e.g., a geographically distributed system with a logical hierarchy imposed)

are of interest. However, systems in which all decision makers are locatedA at
one node are not of interest. Thus, in the distributed system of interest we
can have multiple decision processes at a node, multiple nodes at each level,

and multiple levels.

Whatever the structure, each decision maker will have a problem to solve

locally. A Key research issue in distributed decision making is to insure

that the combination of the local solutions constitutes a good (but not

3

necessarily optimal) solution to the global problem. Although the decision

makers are willing to cooperate with one another for the overall good,

conflicting decisions may result from different information inputs, different

reasoning processes, or different local objectives. Technology must be

developed to handle this problem.

The design methodology is also being developed in the context of Air" C3
Force C problems. By applying the design methodology, a user will be able to

generate a good DDM structure for any problem of interest. The methodology

must determine the task architecture, authority architecture, information

structure and distributed system architecture.

Our approach is both top-down and bottom-up. On the one hand, it is

problem-oriented. Starting with a problem description we generate candidate

distributed decision making systems, through the decomposition of the original

" problem description. At the same time, we use our understanding of the

* strengths and weaknesses of various DDM techniques to help choose the

*i appropriate structure from the bottom-up. In generating a design, evaluations

are performed at each structural level to select good designs. Structures can

be evaluated over many attributes: the expected quality of the distributed

decisions with respect to a global performance measure, reliability,

computational and communications burdens, responsiveness to changing

parameters, and ease of reconfiguration, for instance.

2.2 ADVANTAGES OF DISTRIBUTED APPROACHES

We introduce this section with an example to motivate the need for

distributed decision making, processing, data bases, and computer

architectures. The command structure of the Air Force in Europe is widely

distributed geographically. Within this structure it is natural to consider a

decision making aid system as consisting of (1) computers local to each

command to assist with local decisions and (2) communication links to tie the

* computers into a network to assist in data transmission for higher level

* (hierarchical) or cooperative (heterarchical) decisions. When one considers

that Soviet doctrine towards the European theater calls for quickly cutting

all NATO communication lines in Western Europe, the need is clear for keeping

decision making systems (humans and machines) as close as possible to the

resources they impact (sensors and weapons). Also clear is the need for a

4

0

highly survivable communications backbone through the use of redundant paths

linking the distributed computers.

The remainder of this section discusses the many advantages of

distribution: fit to problem, reliability, modularity, throughput and

response time, and cost.

2.2.1 Matching the Architecture to the Problem

As pointed out above, a distributed system is often a good match to the

physical characteristics of a problem, especially when the multiple foci of

interest are geographically widespread. Within a single node or cluster of

nodes within the distributed network (a location), a number of benefits may

accrue. This location may operate in relative independence from the network,

which results in reduced system complexity. The less complex local subsystem

will be easier to tune for best performance under the specific local

conditions. In most cases, data can be stored and processing done locally.

This is one factor in the higher system throughput and reliability discussed

later. Finally, in complex group decision making, the data and processing

that are unique to each location contribute to the diversity of viewpoints

within the entire system that is important in many decision tasks.

2.2.2 Reliability

Keeping locally that data which is used locally promotes local

survivability or system-wide robustness if another location is not working.

If a data base is spread throughout the network, then the risk is spread also.

If one location is out, a distributed process may still be able to function

with reduced capability. .

The redundancy made feasible by the use of identical, mass-produced

processing and communication components increases reliability and maintain-

ability. It also reduces costs and promotes expandability and dynamic load-

sharing and routing of communications.

2.2.3 Modularit

The modularity due to replicated components supports system flexibility

including expandability and reconfigurability.

5

'a1

2.2.4 Throughput and Response Time

Throughput is increased by providing faster response to local requests, by

taking advantage of the asynchronous parallelism possible in working on

different problems in different parts of the network at the same time, and by

* allowing underutilized parts of the system to help overloaded parts (load-

sharing).

2.2.5 o

Overall cost is lowered by reducing communications and possibly

processing, by using mass-produced components, and by using the less expensive

components available with today's technology, such as microprocessors, sensors

and custom VLSI chips.

2.3 A PLANNING AND CONTROL SCENARIO

The issues to be investigated for this project are numerous. To enable

us to focus on these issues, we decided that it was necessary to choose a

specific scenario to study initially, rather than consider the entire class of

planning and control problems. We intend to generalize the results of our

investigation later on by considering other scenarios.

Our current scenario is in the area of futuristic air offense. Mission

planning is to be done for aircraft and for air-launched missiles, for example

cruise missiles. Additional friendly entities could include ground bases,

processing centers, or satellites. The objective is to plan a coordinated

attack against the set of enemy targets, which are protected by a set of enemy

defensive units. Targets are assumed to have explicit values associated with0
them, defenses have only implicit value in that attacking them may make it

easier to destroy targets, and both targets and defenses are assumed

stationary.

* The planning problem consists of making a number of interrelated

decisions: trajectories must be chosen for the aircraft, each missile to be

used in the mission must be assigned to a defense or target, launch points and

trajectories must be chosen for each of those missiles, etc. Issues that

enter into the planning include finding the trajectories that maximize

probability of survival while satisfying constraints, deciding how many

6

7 i,.

missiles to use against defenses and how many to save for the targets, timing

individual flights so that if a defense is to be attacked then no missiles or

aircraft should fly past that defense until after it is attacked, and the

trade-off between flying the launch platforms in closer to the targets to give

the missiles greater effective range and threatening the platform and its

,- '. missiles by therefore exposing the platform to greater threat from defensive

*--, sites.

Even from a centralized point of view, these are interesting issues to

investigate. However, we are looking at these issues within the DDM frame

work. Several DDM structures are possible within this scenario. One could

use single-level distributed control with the decisions made either at the

ground bases, aboard the launch platforms, or aboard the missiles themselves

(strictly automated on the missiles, of course), allowing communications

between the decision makers. Hierarchical control structures also present

themselves. For example, ground bases could allocate launcher and missile

* -resources to enemy sectors, launchers could choose their own trajectories, and

missiles could select their own targets and trajectories. Communication

-channels would exist within and between the different decision making levels

to allow for coordination. A more detailed description of the scenario can be

* -"found in Section 4.1.

7

0

3. SURVEY OF RELEVANT TECHNOLOGY

3.1 DECENTRALIZED MATHEMATICAL METHODS

3.1.1 Introduction

Decision making is an activity that all human beings engage in. Thus

it is a subject which has been studied by researchers in many diverse dis-

ciplines such as economics, management science, engineering, medicine and pay-

chology, etc. Many different theories and approaches to decision making exist.

* For example, prescriptive mathematical theories of decision making originated with

the theory of games of von Neumann and Morgenstern [1], and the statistical

' decision theory of Fisher (2], Wald [31 and Savage [4]. At the same time

psychologists have been investigating experimental situations for the study

of decision behavior (51- [.8]. Recently, a hybrid "behavioral decision

theory," which combines psychological investigations with mathematical

theory, has evolved. Reviews of this area can be found in [9,10], and

the book [11].

The study of distributed decision making is more recent, although
the key assumption of game theory is the existence of multiple decision

makers with different objectives. Most of the work in distributed decision

making has appeared in the literature of system and control theory (see

[12]- L14] for earlier surveys), decision and organization thoery [151

and optimization theory [16]- (181. Related work can be found in the

literature of distributed artificial intelligence [19]. However, to the best

of our knowledge, there is not much of a "distributed behavioral decision

theory." In this memo, we survey the literature on distributed decision

making in the areas of decision theory, optimization techniques and control
theory. These three areas are chosen to be surveyed together because they are

all prescriptive in nature. Philosophically, they rely on models and objective

functions and focus on the problem of optimizing the objective functions

given the models and the constraints. They are different in the kind of

* models used and the specific solution techniques. However, there are sufficient

similarities for them to be considered together. This is especially true

in the distributed situation when some of the techniques have their origins

in multiple disciplines. The subject of distributed artificial intelligence

is surveyed in Section 3.2.

8

The structure of this section is as follows. In Section 3.1.2, we present

the main issues in distributed decision making to facilitate the discussion

and comparison of various approaches. In Sections 3.1.3 to 3.1.5 we survey distri-

buted decision making in the three approaches. Each section is introduced

with a discussion of the centralized framework and is followed by a

description of the existing results.for the distributed case.

3.1.2 Issues in Distributed Decision Making

3.1.2.1 Introduction

A decision problem consists of the following main ingredients:

a decision maker or a group of decision makers and the environment. The

decision makers make decisions which, when implemented, influence the

environment. The decisions are made using the current available information

which can be on-line (real time) or off-line (a priori). If the decision

problem is dynamic the information at any time may also depend on the

decisions made and implemented at an earlier instant (see Fig. 3-1).

_a priori information

real time 71
information DECISION decisions

MAKER

ENVIRONMENT

Figure 3-1 Dynamic Decision Making

9

A decision process generally involves several steps: problem recogni-

- tion and structuring, options (alternatives) generation, decision selection

and implementation. As shown in Figure 3-2, it is frequently necessary to

go through many iterations between the steps before a decision is made and

implemented. Most of the work in the decision making literature, and almost

all the work in the areas we survey, deals with the decision selection

process. Thus, in the context of this survey, decision making is the choice

of an appropriate action from a set of alternatives given the available

information.

3.1.2.2 Advantages of Distributed Decision Making

tg There are different reasons for adopting a distributed decision making

structure over a centralized structure. Sometimes, distributed decision making may

be the only option when a centralized structure is not feasible. At other times,

the centralized option exists, but distributed decision making may be preferred.

The advantages usually given for distributed decision making are:

1. Better performance such as: faster response since the decision
makers are closer to the environment; increased reliability
since there is not a central decision maker whose failure may
cause havoc to the system.

2. More efficient utilization of communication and/or computation
resources.

3. Ease of design since the design of one central decision unit is
replaced by the design of smaller units.

. 4. Better growth potential.

Not all of these advantages are present in every distributed decision

making system. In the following survey we discuss the different approaches

with respect to presence or absence of these advantages.

3.1.2.3 What is Distributed?

As discussed in Section 3.1.1, in this survey we are particularly

interested in the problem of selecting an appropriate action from a set of

alternatives given the available information. in distributed decision making,

10

ILJ

'o-1 00

93 LU
2C 1*

ui.

LA0J

cc 0-
Q u

Cm

LUJ

either the information (off-line or on-line) is distributed, or the computation

involved in the selection process is distributed, or both can be distributed

at the same time. The different ways of distributing the information and

computation result in different distributed decision making algorithms.

They also have implications on which advantages discussed in Section 3.1.2.2

would actually be realized.

3.1.3 Decision Theory and Decision Analysis

3.1.3.1 Introduction

Decision theory and its more applied form, decision analysis, provide a

prescriptive methodology for decision making under uncertainty. Decision

*theory has a long history dating back at least to the work of von Neumann

and Morgenstern [1], who developed the modern probabilistic theory of utility.

Statistical decision theory was established by Wald [3] and Savage 14]

" who extended Wald's work by formally introducing subjective probability and

utility theory. Further work can be found in references [20] to [25].

The formalism of decision theory includes the following basic ingredients.

A decision maker has to pick an action (u) from a set of alternatives. The

consequence of his choice depends not only on the action itself but also on

the state of the world (x) which is not known exactly to the decision maker.

Any choice function for actions will thus depend on two components: the

evaluation of the consequences and the relative strength of belief in the

occurrence of the different states of the world. In decision theory, the

individual decision maker's ordering of consequences is represented by a

numerical function called the utility function L(u,x) which reflects his

risk preference. The ranking of the likelihood of alternative states is

represented by the subjective probabilities p(x). The utility function (see

126] for a survey of utility theory) and the subjective probabilities represent

4 the basic preferences and judgments of the decision maker. Once these

are specified, decision theory states that a rational decision maker would

maximize the expected utility to obtain the optimal decision, i.e.,

4

12

.|

Max E[L(u,x)] (3.1)
'U

where E denotes the expectation operator given the subjective probabilities

on x and

E[L(u,x)] - fL(ux)p(x)dx

or L(u,xi)P(xi),
i

depending on whether x is continuous or discrete.

In the formulation of (3.1), the decision problem is static in nature,

i.e., u is chosen before the state of the world is observed. This is frequently

expressed in terms of a decision tree.

X L(u1 ,X1)

x
x2 L(u ,x)
x 1 2

L(ux)

lox 3

X L(u2 ,x3)

Qdecision (act) fork ochance (event) fork

Figure 3-3 Decision Tree

13

r-• .- * ** * **.

In Figure 3-3, there are two alternative actions and three possible

states of the work. The optimal decision is found by maximizing E[L(ui,x)].

In general, however, decision problems may involve a sequence of decisions,

each to be made after some uncertain outcomes are observed. Graphically,

. the decision tree is now as given in Figure 3-4.

Figure 3-4 Sequential Decision Problem

Mathematically, both the state and the decision are now vectors partitioned

as x - (x1xN) , u - (ul uN) and ui is allowed to depend on a sub-

- set of x. The problem is solved by starting at the final outcome (the very

tips of the tree) and working back by the successive use of two steps:

1) an expectation process at each chance fork

2) a choice process that selects the path yielding the maximum
future evaluation at each decision fork.

This averaging out and folding back procedure is actually backward dynamic

* programming.

Using decision theory as the mathematical foundation, decision

analysis [27,28] provides a quantitative method for the systematic evaluation

* of alternative actions. It entails the identification of the alternative

14

- . .." * : : -- - - - -: -: - - : .

choices involved, the assignment of values (cost/benefits) for possible

consequences and the construction of the model for their interrelations.

Decision analysts are particularly concerned with the most practical problems

of eliciting the subjective probabilities from the experts and encoding the

preferences of the decision makers. Using this information, the probable loss -1

or gain associated with alternative choices can be analyzed. Y

Much of the work in decision analysis has been performed at two private

contract research firms, SRI [29] and Decisions and Design, Inc. [301. It has

been addressed to military problems [30] as well as other applications,

* from seeding hurricanes [31] to power system planning [32].

3.1.3.2 Team Decision Theory

Classical decision theory and decision analysis are centralized, i.e.,
there is only one decision maker with a utility function and a set of subjective

probabilities about the state of the world. The presence of multiple decision

makers makes the problem more complicated because the decision makers may

have different utility functions and/or different assumptions about the

underlying uncertainty. Even when all the decision makers have the same view

of the world and are going to make their decisions cooperatively, there still

remains the problem of defining optimality for multiple utility functions.

One approach is given by multiattribute utility theory [33] where an

organizational utility function is constructed from the individual utilities.

When this approach is not valid the multiple utility nature of the problem

has to be considered explicitly and each decision maker has to model the impact

of the other decision makers on his own utility function. This problem is

studied in game theory [1] for which a large body of literature exists. Game

theorists are concerned mainly with a normative theory on the behaviors of the

individuals in a gaming situation. Various solution concepts for the multiple

objectives of the decision makers have been defined (20], dealing with both

cooperative and noncooperative situations. However, game theory is more useful

as a language and as an explanation of behavior than as a prescriptive theory for

making decisions. Another approach is given by team decision theory which

1

15

P-E

considers decision making by multiple decision makers with a single common

objective but different information about the underlying uncertainty. Phys-

ically, one may imagine the decision makers to be connected by a communication

network which is imperfect.

Team decision problems were first introduced by Marschak to study

management organizations in 1955 (34] and are still studied by economists (35]-

[37]. Radner presented some of the first analytical results [38]. A lot of

these earlier results can be found in [391. An early application was given for

the airline reservation problem [40]. Some of the original motivations for

the development of the theory have been largely eliminated through the general

availability of computer information networks, e.g., airline reservation

systems. However, problems where information is generated and used in a

distributed manner still arise and fall naturally into the realm of team

decision theory.

The following is a general model for team-theoretic decision problems

[41,42] and can be viewed as a natural extension of the classical centralized

decision problem. There are five principal ingredients:

I. A vector of random variables x = [x x I with a given probability

1m

density function p(x). This represents all the uncertainties

that are relevant to the problem, including random disturbance,
observation uncertainty, etc. x is frequently referred to as the
state of nature and lies in a possible set X.

2. A set of n observations z = [z 1 ... *Zn] which are given functions

of x, i.e.,

zi - rni (x 1 x) i = 1. ,n. (3.3)

ziCZ is the observation available to the ith decision maker. The set

K {nili-l ...,nI is called the information structure of the problem

Note that the subjective probability of the ith decision maker
is now p(xlzi), which is in general different from that of the other
decision makers.

3. A set of decision variables, u = [ul u 1, one per decision maker.
Each ui lies in a possible set of decision alternatives Ui .

16

4. The strategy (decision rule, control law) of the ith decision
maker is a map yi: Z UVi i.e., the decision of the ith

decision maker can only depend on the information z

/:u i Y i(zi (3.4) ::

where is to be chosen from a set of admissible strategies r
i

5. The loss or utility function of the problem is a map L: X x U- R,

i.e.,

Loss = L(u1 uX)

Frequently, the loss or utility function is defined indirectly in
terms of an outcome or a consequence which then depends on u and x.
Note that the loss function depends on the state x and the decisions
of all the decision makers u.

For any decision strategy -y (y, Iy) the decision u becomes a

random variable and thus L becomes a random variable. The expectation of L

can then be taken with respect to p(x);

J(y) -E[L(y 1zl),y2(z2) Yn(zn),X)].

The team decision problem is then

Min J(y)
yer

or find the optimal decision strategy y* which minimizes the expected loss.

Alternatively one can maximize the expected utility.

Much of the research in team decision theory is concerned with the

investigation of optimal decision strategies for various assumptions on x,y,y and

L. There are two main classes of teams: static teams and dynamic teams.

These will be discussed separately.

3.1.3.2.1 Static Teams

A static team is one where the observations of the decision makers

depend only on the state x, as in the formulation above. Conceptually the

solution of the problem is quite straightforward. For linear information

17

I

structures (i), Gaussian random states (x) and a quadratic loss (utility)

function (L), the optimal decision strategies can be shown to be linear [38],

ie., Y is of the form

ii

Y (z) A AZi + bi (3.6)

The matrices A and vectors b i=l.. .n can be computed easily from thei i
problem parameters but the computation is centralized. When these simplifying

assumptions no longer hold, the solution becomes more complicated but is

still conceptually tractable. In essence, the problem is still that of finding

a set of decision rules yi i=l ,n such that for each i

, ,

Arg Min E[L(y i(z),.. y (z l,..YipZ+1),UY (zi+) x) zi] (3.7)

is consistent withy i " Here Arg Min denotes the value of u i that minimizesui

the function. Intuitively, equation (3.7) states that given the optimal

decision rules of the other decision makers, decision maker i is faced with the

usual decision theoretic problem where the subjective probability is now

p(xlzi) and the utility function is expressed as

n(Y*(nl(x0) (3.8)

i.e., it depends on x through the observations and decision rules of the

other decision makers. Conceivably an iterative scheme can be devised to solve

fo; the optimal decision rules. One can start with a guess of the set Yl,..Yn'

and solve equation (3.7) for each i. If the solutions are consistent with the

original set of y's, then the set is optimal. Otherwise, the yi's should

be adjusted until the consistency conditions of (3.7) are satisfied.

3.1.3.2.2 Dynamic Teams

If in equation (3.3), zi depends on uj, J-1 n in addition to x, i.e.,

zi , Yi(ul,...,un,x), (3.9)

then the information structure is dynamic and the problem becomes a dynamic team.

18

I

In order for the problem to be well-posed, certain causality constraints, such

as a decision cannot depend on an observation which depends on that decision,

have to be satisfied [44]. Intuitively an information structure is dynamic

if the information of a decision maker depends not only on the state of the

world but also on the decisions of the decision makers preceding him.

Certain dynamic information structures are equivalent to static informa-

tion structures. The broadest class is that of partially nested information

structures. In a partially nested information structure, if zi, the observation

of the ith decision maker depends on the decisions uj, J£Ni. then the observa-

tions zjJcNi are all contained in z . More succinctly, if uk affects z i ,

then the ith decision maker knows what the kth decision maker knows. It can

be shown that a partially nested information structure is equivalent to a

static information structure since the ith decision maker can eliminate the

effects of uj,JcN i from his knowledge of zjjcNi. Most of the analytically

soluble team decision problems which have appeared in the literature have

partially nested information structures. An example is when each decision

maker has perfect recall of all his past observations and decisions.

When the information structure of the team is not partially nested,

the solution becomes very difficult. This is due to the fact that we are dealing

with an optimization problem in the y1,y2... space and there is no simple

way of solving this functional minimization problem. Also, if uj can

modify the observation z received by the ith decision maker, then decision maker

j can encode his own observation z in uj and reduces the ith decision maker's

uncertainty about the state of the world. The effect, called signalling

L44]--[46] is a major contributor to the complexity of the problem since the

optimization procedure has to carry out a trade-off study between signalling

and direct optimization of the expected loss.

Dynamic teams are closely related to the decentralized stochastic

* control of dynamic systems. Thus we will consider this area in more detail

again when we survey the literature in decentralized stochastic control.

19

3.1.3.3 Summary

Team theory deals mainly with the situation where the multiple decision

makers cannot communicate their observations efficiently in real time, so that

the on-line information used in their decisions is decentralized. The decision

rules, however, are still computed in a centralized manner by all the decision

makers. Thus, referring to our discussion in Section 3.1.2, team theory is mostly

concerned with satisfying the communication constraints or conserving the

communication resources. Given these communication requirements, the performance

is to be optimized. Since the real time information is decentralized, the

system is quite reliable with respect to communication failure. Also, the

absence of a central real time processing agent increases its reliability.

However, since the computation of the decision strategies is carried out at a

central site, the overall decision system is probably not very adaptive

to changes in the system configuration. Thus team theory is most applicable

when decentralization of the real time information is the overriding concern.

So far, most of the results in team theory are still theoretical in

nature. One may speculate whether team theory will form the theoretical

foundation for a methodology in distributed decision analysis just as decision

theory leads to decision analysis. The answer is probably that substantial

theoretical advances have to be made before this can happen. Decision theory

is based on the application of dynamic programming and Bayesian analysis,

which are very well understood. In a situation where information is decentralized

both of these tools are no longer applicable and their distributed versions

still remain to be discovered. Thus, except for simple single-stage problems,

not much can be said about distributed decision analysis.

20

02

3.1.4 Optimization Theory

3.1.4.1 Introduction

- Optimization theory is a very broad area, spanning static as well as

dynamic problems. Broadly defined, it includes both decision theory and

*optimal controlt although these areas have special additional features which

set them apart from straightforward optimization. For example, the presence

of uncertainty is essential in statistical decision theory while control theory

deals primarily with dynamical systems. When applied to decision making,

optimization is used to select the optimal decision from a sct of alternatives.

The existence of a well-defined objective function and a set of feasible alterna-

*tives have to be assumed. Common optimization techniques include linear and

nonlinear programming, integer programming, network flow techniques and dynamic

* programming.

When the dimension of the problem is large, it is desirable and some-

times essential to distribute the computation involved so that it can be solved

by a number of processing units (decision makers), each handling a small problem.

Since Dantzig-Wolfe's decomposition algorithm [47] in linear programming and

the Arrow-Hurwicz paper [48] on decentralized resource allocation, there has

been a lot of work on distributed optimization. algorithms [16]-[18]. There are two

major classes of algorithms: those where the decision makers are arranged

in a hierarchy and those where they are truly distributed with no particular

center. We shall consider both classes separately.

3.1.4.2 Multilevel (Hierarchical) Algorithms

Multilevel algorithms are based on the philosophy of decomposition and

*coordination. Typically, the original large-scale mathematical programming

* problem is manipulated into a form which lends itself readily to decomposition.

* These decomposed problems are then solved independently by the local decision

makers. Usually, however, the original problem is not completely decomposable.t

Thus a coordinator is needed to influence the problems of the local decision

makers so that the global solution is obtained. The lower level decision

21

L

U

makers and the coordinator form a hierarchy as shown in Fig. 3-5. The local

decision makers solve the decomposed problems independently given some coordina-

tion parameters sent from the coordinator. Information about the solutions

of the local problems is sent to the coordinator who then adjusts the coordination

parameters. The process is then repeated until no further improvements can

be made.

COORDINATOR

I I local
2 • ' • decision maker

Figure 3-5 Multilevel Optimization

There are two main ways of problem manipulation [16] to obtain the

decomposition. One is primal; the other is dual. The primal methods include

separation, projection, inner and outer linearizations. After the so called

master problem is obtained, solution strategies including piecewise techniques,

restriction and relaxation are used. An example of a primal variable method is

the following [16].

The given optimization problem is:

n

Max E fi(xi) (3.10)
x i=l

subject to hi(xi) > 0 i-J,...,n

nE_ gi(x i) b

i=l

where fi, hi and gi are all concave differentiable functions of the vector xi.

22

. .. I....." d

I!
First the problem is projected onto the space of its coupling con-

straints by introducing the vectors y.....,y . Then ve have

n
Mtax f fi(xi1) (3.11)

x

subject to

hi(xi) 0., gi(xi) d Y, i-l,...,n

n

I i=l

If the y 's are given, then (3.11) separates into n independent

problems of the form

Max fi(xi) (3.12)
xi

mi

subject to

hi(xj) 0 gi(x) Y

Each of these is the problem solved by the ith decision maker at the lower

level. Let vi(yi) be the maximum of the ith local problem given yi. The

coordinator's problem is then

n

Max v(y) (3.13)
y iml

subject to
~n
Ig Yi = b.

The feasible directions strategy for (3.13) is to generate an improving

sequence of y's. Note that yi can be regarded as the allowable resource

*I for the ith local decision maker. Thus in the primal method, the coordina-

tor actually allocates the resources.

If ye dualize (3.10), we obtain

n n

Max Z fi(xi) + ' [b - E g(xi)] (3.14)
x il i-l

23

Oa

or
n

Max E (fi(xi) - xg(xi)) +)b. (3.15)
x

Once X is chosen, the inidividual decision makers can solve their problems

* independently

Max f(xi) - xg(xi)
xi

subject to

h±(xi) 0 0 (3.16)

The coordinator's job is to adjust X until

n

b = g(xt) (3.17)
~i=1

One possibility is to adjust X(t) according to the rule

n

A(t) = i(g(xi(t))-b). (3.18)i~l

In this algorithm, the price of the resource at time t coordinates the n

decision makers who optimize, given X(t). The excess demand is used by

the coordinator to modify the price X(t). This is in essence the Arrow-Hurwitz

algorithm [48].

Multilevel algorithms have always been the principal way of decomposing

a large-scale mathematical programming problem. Dantzig-Wolfe's algorithm

[47] is a two-level algorithm, so is Lasdon et al's technique [49] on

* separable= mathematical programming. The work of Cohen [50] shows that

there is a close relationship between the well-known classical techniques

(gradient, Newton-Raphson, etc.) and most of the two-level algorithms.

This may account for their abundance.

The primary reason for using a hierarchical approach is to distribute

the computation involved in a large optimization problem among the

decision makers in the hierarchy. Since computation time usually rises at

a faster than linear rate with problem size, the solution of the many smaller

r problems will be more efficient than the solution of the original large problem.

24

Moreover, since the lower-level problems are independent of one another

given the coordinating parameters, parallel computation is possible.

However, the coordinator needs to supply the coordinating parameters

in an iterative manner. If the number of interactions is large, the

computational savings of this multilevel approach may be lost. It is

,.A difficult to make general judgements as to when efficient coordination is

possible. One situation where decomposition helps is when the number of

interconnection equations is small. Some estimates of computation time

-for a simple case can be found in [51].

Some information decentralization is also achieved with the multi-

level approach. The coordinator does not need to know the global problem

and each local decision maker needs to know only his subproblem (objective

and constraints). A lot of information transfer, however, is needed

between the coordinator and the lower-level decision makers. Eventually

the equivalent of enough communication to transfer the global problem may

have been made.

A multilevel system is often Llaimed to be more reliable than a

centralized system. This is true if the failures occur with the lower-

level decision makers. Then the coordinator can modify the coordination

algorithm to adapt to the new structure. If the coordinator or the communi-

cation network linking it to the lower decision makers fails, then the

performance of the system can be severely affected. Thus the claim that

a multi-level system is more reliable should be qualified. In the next

section we shall consider truly distributed algorithms which would be

more reliable.

3.1.4.3 Distributed Algorithms*
Truly distributed optimization algorithms have been studied in two

closely related areas: dynamic programming and network flow

problems. These are considered separately.

3.1.4.3.1 Dynamic Programming

A. Spatial Dynamic Programming

Dynamic programming [52] is a decomposition method for handling

large-scale optimization problems. The application of dynamic programming

embeds an optimization problem with special structure into a sequence

25

* of smaller optimization problems, which are presumably easier to solve.

Usually the decomposition is with respect to time or stage. Thus it is

particularly suitable for optimization of dynamic systems where the

*. temporal structure is already present. It can be shown [53] that

temporal decomposition is not the only way of decomposing a mathematical

optimization problem by means of dynamic programming. When the spatial

structure of a system consisting of subsystems is exploited, the result is

spatial dynamic programming [541[55]. In spatial dynamic programing,

the stage variable now corresponds to each subsystem, and the state

corresponds to the interaction variables. The optimal solution parametrized

on the possible interaction variables is found for each subsystem. The

partially optimal solutions are then successively combined to produce the

* globally optimal solution. For example, if we consider the problem given

by equation (3.10),each subsystem will solve the problem given by

equation (3.12)parametrized on yi to obtain the optimal solution v (yi).

These functions vi(yi) are then passed on to the other decision makers,

consecutively from 1 to n. Each decision maker solves for all 0 < zi b,

* the problem

Max vi(zi-yi) + Ji1 (yi) (3.19)
04 Yi' zi

to obtain Ji(zi). The optimal solution is then obtained by the ntii decision

S. maker with z - b. The optimal interaction variables are found in a• n
* backward sweep from the nth decision maker to the first. An application

of this idea to resource allocation can be found in [56].

0 In spatial dynamic programming, each decision maker has to optimize

his subproblem for all possible values of the interaction variables.

Unless an analytical solution can be found, this would have to be performed

numerically given specific values of the interaction variables. Thus,

even tiiqugh the amount of computation for each optimization may be small,

. the total amount over all interaction values may be large. Furthermore,

these optimal solutions have to be transmitted to the other subsystems. In

, general, the application of spatial dynamic programming is only suitable

26
0

when the interaction variables are few in number and can be parametrized

efficiently. Otherwise, even though the algorithm is noniterative compared

Ii to the multilevel approach, the amount of computation or communication

involved may be overwhelming.

The spatial dynamic programing approach is quite reliable with

respect to subsystem failure. The algorithm itself is modular in

structure, as long as there is a local decision maker to take care of the

optimization. When subsystems are added or removed, the overall system

can be reoptimized without the need of solving all the subsystem optimiza-

tion problems over again.

B. Distributed Dynamic Programming

Another way of distributing the computation involved in dynamic

programming has been proposed by Bertsekas [571. There are straightforward

=- schemes of distributing the calculations involved in each recursion of

the usual dynamic programming algorithm among several processors. These

schemes usually require that all processors must complete their assigned

portions of the computation before a new stage in the recursion can begin.

Thus processor synchronization is necessary and the speed of computation

may be limited by the slowest processor. The distributed dynamic programming

algorithm of [571 considers asychronous distribution of computation for

a class of dynamic programming problems including shortest path problems

(which probably provided the original motivation) as well as finite and

infinite time horizon stochastic optimal control problems.

The basic formuation of the dynamic programming problem considered is

* given below. Let x and u be the state and control belonging to the spaces

S and C respectively. For each xfS, V(x)CC is the control constraint set.

Let F be the set of all extended real valued functions on S. A partial

order on F is defined as

1 J2 if J(x) 1 . J2(x) V xES

1 J if J1(X) - J2(x) V xS (3.20)

27

0

Let H be a monotone extended real-valued function on S x C x F, i.e.,

H(x'uJ 1) < H(x'uJ 2) VJ1 < J2(3.21)

H gives the optimal cost starting from x if control u is used. The

dynamic programming problem is then to find a function J*F where F is

a given subset of F such that VxCS

J*(x) - inf H(x,u,J*) . (3.22)

uCU(x)

J*(x) is then the optimal cost-to-go starting from the state x and

equation (3.22) is the standard Bellman's equation in dynamic program-

ming. One can then view the solution of the dynamic programming problem as

finding a fixed point of the mapping T within F, where T:F F is defined by

T(J)(x) inf H(x,u,J) . (3.23)
~ueU(x)

It is assumed that n computer centers (decision makers) or nodes

are present. The state space S is partitioned into n disjoint subsets

denoted by Si ... Sn . Each node i has the responsibility of finding J*

for all states x in the set Si. Each node has a set of neighbors whose

estimates of J are needed for the computation of T(J) at the ith node. At

each time, node i can be in one of three possible states; compute,

transmit or idle. In the compute state, each node i computes a new

estimate of the values of the solution function J* for all states xCSi,

using the estimated values of the function obtained from its neighbors.

In the transmit state, node i communicates the estimate obtained from

the latest compute phase to other nodes. In the idle state,node i

does nothing related to the solution of the problem. Under certain

assumptions on the problem structure, and the timing and ordering of

the computation and internode communication, the algorithm converges to

the optimum.

28

re

A

This algorithm is essentially iterative, as compared to the sequential

dynamic programming. It requires little computation at each stage and the

communication is restricted to between neighbors. The number of iterations

required to produce a solution may be large, however. Since there is no

center or coordinator involved, the algorithm should be reliable for certain

kinds of iuode failure, at least when the nodes can discover the source of the

failure and reinitialize the algorithm. This, however, is not a problem

whose solution is obvious.

When applied to the shortest path problem, this distributed algorithm

yields essentially the original routing algorithm implemented in the ARPANET

[58].

3.1.4.3.2 Network Problems

The nice mathematical structure of many network problems provides a
natural setting for the use of distributed algorithms. Lau, Persiano and

Varaiya [59] developed a decentralized algorithm for solving the problem of

maximum flow through a network. Decentralized schemes for achieving a common

steady-state frequency for a set of spatially separated oscillators have been

considered in [60] and [61].

By far the most successful application of distributed algorithms has been

in the routing problem in packet-switched (or store-and-forward) computer

communication networks [58], [62] to [77]. Apart from the algorithm developed

by Cantor and Gerla [62], which is basically static and hierarchical in nature,

all the other algorithms are truly distributed and deal with quasi-static

routing.

Distributed algorithms are naturally of interest in quasi-static routing.

Quasi-static routing problems are typified by the situation where a network

is in operation but changes in the routes are needed because of changing

traffic patterns such as the establishment/termination of communication

29

sessions or the addition/elimination of links. A centralized approach to the

problem where one node periodically collects information from all the

Cother nodes about the traffic requirements and uses this information to solve
the current static routing problem is not practical for the following reasons.

*First, protocols are needed for communicating information and decisions

between the central node and all the other nodes. Second, if there is a

failure in the network, centralized routing suffers from the "chicken and egg"

problem of needing routes to communicate the network information to establish

new routes. Thus distributed routing algorithms such as those used in the

ARPANET [58), [63], [64] are essential.

There are two main classes of routing algorithms. In single path

algorithms, such as the ones used in the ARPANET, each packet is sent over

a route to minimize the delay to its destination with no regard to other

I packet's delays. In multipath algorithms given the total incoming traffic

for various destinations, each node in the network attempts to find the

fractions of the total traffic to be sent along various paths from that node

*so as to minimize the overall delay for all messages. The two approaches

will be considered separately in the sequel.

A. Single Path Routing

Single-path routing problems are really shortest path problems.

Distributed shortest path problems have been considered by Abram [651,

Abram and Rhodes [66] and by Merlin and Segall [67]. The shortest path

problem can be formulated as follows:

Consider a directed graph consisting of n nodes A - {l,...,n} and

4g a collection of links L = {(i,j):i,J'A and there exists a link from i to j}.

To each link (i,j) is associated a distance d(i,j) which in routing problems

corresponds to the estimated delay between node i and node J. It is desired

to find the shortest path (with respect to the distance d) from any arbitrary

49 node to any other node.

It is fairly obvious that this problem can be solved by centralized dynamic

programming and possibly by distributed dynamic programming [57]. Abram and

4

30

... I

* Rhodes [66] considered decentralized shortest path algorithms that enable

each node in a network to compute its shortest distance to any other node

using only local knowledge of the network topology and only local information

transfer between adjacent nodes. In their static algorithm, which is similar

to those found in [58],[68] and [69], each node keeps an assessment of the

current estimated shortest distance via each of its neighbors. Based on these

distances the current shortest distance to the destinatin as well as the

neighbor(s) via which this minimal distance is achieved can be found.

Whenever a node's current shortest distance to a destination decreases, either

through initialization or new information received from a neighbor, the node

transmits this distance to all its neighbors, who then update the corresponding

distance assessments by adding this distance to the known lengths of the links to

the sender. The algorithm continues in this manner and is shown to converge

in finite time to the solution of the shortest path problem.

Their dynamic algorithm handles dynamic networks in which branch lengths

may decrease or increase, new branches (nodes) may be introduced into the

network and branches (nodes) may be removed from the network. After a

change in the network has occurred, initialization procedures are used to

insure that a node only accepts information from nodes which are aware of

the changes in the network.

Merlin and Segall [671 considered a distributed routing algorithm which

adapts to changes in the network flow requirements and converges to the

shortest paths in finite time. The key feature of their algorithm is that

it provides for finite time recovery of the routes after arbitrary topological

* changes in the network, such as link (node) outages or link (node) additions.

Both of the algorithms mentifLed can handle topological changes. There are

substantial differences between them. For example in [66], the node detecting

the topological change generates the reinitialization; in [67], each

* distination controls the updating of routing paths. This implies some

different information requirements.

31

*- B. Multipath Routing

Multipath algorithms, as typified by those considered by Gallager [70], can

be regarded as solutions to the following convex multicommodity network flow

* problem in the routing variablesik(i), j - l...,n, (i,i)CL:

Minimize Dik(fik) (3.24)
(i,k)cL A

subject to ti(j) = ri(J) + EtJ()¢ki(i) :
i i i ki

fik = Eti(J)ik(j) (3.25)

Oik(0) > 0 for all (i,k)CL, J 1 ,...,n

where D are convex functions representing the delay on link (i.k), r(j)
ik i

is the expected traffic entering the node i and destined for node J, ti(J) is

the total expected traffic (node flow) at node i destined for node J,

ik (J) is the fraction of the node flow ti(j) routed over link (i,k) and fik is

the expected traffic on link (i,k).

Obviously each node i should decrease those routing variables 0ik(J) for

which the marginal delay is large and increase those for which it is small.

Gallager's algorithm consists of two parts: a protocol between nodes to

calculate the marginal delays and an algorithm for modifying the routing

variable. Both of these can be implemented in a distributed fashion, requiring

only communication between neighbors. For stationary input traffic statistics,

the delay through the network coverges, with successive updates of the

routing variables, to the minimum average delay over all routing assignments.

Second derivative versions of Gallager's algorithm have been considered in

[71],[721 and have been shown to possess nice convergence properties. Other

distributed multiple path routing algorithms have been considered in [73],

where the price (goal) coordination technique of large-scale system optimization

is used. While this normally results in a hierarchical structure with a

32

coordinator, as pointed out in the previous section, in this particular case

the function of the coordinator can be distributed among the nodes in the

network. Implementation of the algorithm will then only require information

exchange between the adjacent nodes.

All the distributed network algorithms satisfy the decentralized informa-

tion and computation requirements. For single path problems, because of the

discrete nature of the problem, finite time convergence of the algorithm is

often attained. In multiple path problems, the continuous nature of the

algorithm implies that there is no finite time convergence. Thus to achieve

any reasonable performance, a large number of iterations may be needed for

* some problems.

3.1.4.4 Summary

We have considered both multilevel and distributed optimization algorithms.

Except for spatial dynamic programming, whose applicability to practical problems

still remains to be established, most of the algorithms are iterative in

nature, requiring communication between the decision makers. There is,

however, some decentralization in both information and computation.

The main advantage of multilevel algorithms is its ease of design. Well

established steps exist for converting a wide class of optimization problems

into a multilevel structure. Resource allocation problems belong to this

class. By contrast, finding a truly distributed algorithm for a problem may

be more difficult. For example, many multilevel algorithms for resource

allocation exist ([48],[78], and others), but there are not many truly

distributed algorithms [79],[80]. Distributed algorithms seem to be more

applicable to network structures, but even in this case there is no systematic

way of developing the algorithms.

The main disadvantage of multilevel algorithms is the presence

* of a center or coordinator. When a failure occurs in the coordinator, the

performance degradation can be substantial. Thus a distributed algorithm

*is generally more reliable.

33

'.. 7

3.1.5 Control Theory

3.1.5.1 Introduction

*.. Control theory is primarily concerned with the feedback control of dynamical

. processes (systems). Given a dynamical system (where the output at any time

o depends not only on the instantaneous input but may depend on the past input

history), it is desired to design a control input so that the performance of

the system is satisfactory. If the control depends on the real time measurement§,

then it is a closed loop control; otherwise it is open-loop. The structure of

a closed loop control system is shown in Figure 3-6. Control engineers rely

very heavily on the use of the models of the dynamic processes. Thus over the

years, tools have been developed for modeling and representation of dynamic

systems, for describing their qualitative properties such as stability, and

for designing controllers given these models. Though model simplification

methods and stability tests for large-scale systems are relevant to decentralized

control [13], our survey is concerned primarily with the distributed algorithms

for controlling a system. We distinguish between three types of methods:

decentralized stochastic control, hierarchical control and multi-model control.

3.1.5.2 Decentralized Stochastic Control

Traditional centralized control presumes the structure shown in

Figure 3-6, where the controller can use all the measurements to generate the

control. In decentralized control, there are restrictions on the information

7 flow between measurements and controls. For example, in Figure 3-7, control I

can use only the measurement 1, control 2 can use measurement 2, and so on.

Two classes of decentralized control problems have been studied in the litera-

ture. The first class is deterministic and is concerned with the design of

decentralized controllers to stabilize the resulting system. Since this is

primarily an extension of classical servomechanism control, rather than

distributed decision making, it will not be considered here. The second class

is decentralized stochastic control, which is the subject of our current survey. -1

1

34

I-

CONTROLLER

MEASUREMENT CONTROL

~SYSTEM (PROCESS)

Figure 3-6 Centralized Control

CONTROLLER 1 * * ° . CONTROLLER N

MEASUREMENT CONTROL
:1

SYSTEM (PROCESS)

Figure 3-7 Decentralized Control

35

SI

Stochastic optimal control deals with the following problem (in discrete

time with time index k)

Given a dynamic system

.Xk+ - f(xk,Uk,vk) state equation (3.26)

with measurement

y g(X.U) output equation (3.27)

find a control law uk = Y(yk l,...) to optimize a scalar performance index.

Here XkUkYkWkVk represent the state, input, measurement, driving and

measurement noises respectively at time k. Dynamic programming is usually

used to solve this problem (see, for example [81]). With minor restrictions

on the performance index and the nature of the noises, the optimal control law

is known to possess the separation property, i.e., it can be synthesized by

combining an optimal state estimator with an optimal deterministic controller.

When the state and measurement equations are linear, the noises are Gaussian

and the performance index is a quadratic function of the state and control

variables (LQG assumption), the state estimator is the Kalman filter, and

the optimal deterministic controller is also linear.

This problem bears some resemblance to the team decision problem dis-

cussed before. Indeed, by identifying the control action at each time with

a different decision maker, we have a dynamic team problem with the partially

nested information structure. For an LQG problem, linearity of the optimal

*: control law follows immediately (see Section 3.1.3.2).

In a multi-controller version of optimal stochastic control, the output

equation is replaced by n output equations relating the measurements ykit

i-l,...,n of the n decision makers to the state x and the measurement noises

Vki:

Yki gi(xk'vki) " (3.28)

Let Yk - {yj; J-O,...,k; i-l,...,nl be the complete set of past measurements

available at time k. Each decision maker's control uki is only allowed to

depend on a subset of Yk' i.e.,

36

r.

,.

= Yki(Zki). (3.29)

where Zki is a subset of ¥k" The Zki's specify the portions of the total

measurements available to the controllers and form the information structure

(pattern) of the problem [41],[82]. When Zki 0 Y k the information pattern

is said to be nonclassical, and the controllers have to select their controls

on the basis of different information. This is equivalent to the dynamic

team problem previously discussed. When the equivalent dynamic team problem

has a partially nested information structure, the solution of the linear

quadratic Gaussian (LQG) problem still has a nice structure. The SO-called

one-step-delay sharing information structure falls into this class. This is

the situation where the controllers share all their information except the

most recent measurements (45],[83].

When the information structure is nonclassical and not partially nested,

the solution of the optimal stochastic control problem becomes very difficult.

Witsenhausen's famous counterexample [84] shows that for a simple LQG problem,

a nonlinear control law can outperform the best linear law, enen though in the

centralized case, the optimal control law is linear. The optimal solution to

Witsenhausen's problem is still unknown. The nonlinear nature of the optimal

solution is due to the fact that the control now serves a dual purpose:

direct control of the system and communication to the other controllers through

the system dynamics. This is the effect of signalling that we referred to

earlier in Section 3.1.3.2. In a decentralized control system, it is thus possible

to use the system under control as some kind of implicit communication channel,

which the controllers can use for signalling. When the information structure

is partially nested, a controller already knows everything that can affect its

own measurement, and thus there is no need for signalling.

Various approaches to get around this difficulty have been considered in

the literature to obtain more practical control stategies at the expense of

decreased optimality. The most obvious one is to restrict the class of control

strategies to be linear. This approach runs into a difficulty due to the so-

called second guessing phenomenon, [85],[861, which arises in the following way:

Each controller estimates the state of the system and the state estimates of

the other controllers who in turn do exactly the same thing to estimate

these estimates. This implies that the controllers are infinite-dimensional

37

and require a lot of memory. Another approach is to require the controllers

to have a fixed structure and optimize within this class. This has been used

in [85].[87]. Conceptually, the problem is now reduced to one of parameter

optimization.

Applications of decentralized stochastic optimal control have been found in

dynamic file assignment in computer networks [88], and control of multi-access

satellite broadcast channels [89]-[93]. This problem falls very naturally

- within decentralized stochastic control since the users are usually remote

from another, and due to the nonzero propagation and transmission delays for the

signals to go from one station to the other stations via the satellite, the

information structure is naturally decentralized.

Decentralized stochastic control can be viewed as a special case of dynamic

team theory applied to dynamic systems. Thus this approach possesses all the

*0 advantages and disadvantages of the team-theoretic approach discussed in

Section 3.1.3.3. In particular, its emphasis is the decentralization of the real

time information, but the computation of the control strategies is centralized.

3.1.5.3 Hierarchical Control

The theory of controlling multilevel hierarchical systems was introduced

by Mesarovic, Macko and Takahara 184] around 1970. Since then, important advances

have been made [95] - [971. For surveys in this area, see [51] ,[98]. This theory

is inspired by the decomposition techniques in large optimization problems and

is based on the following ideas. Many large systems are actually interconnected

systems, i.e., collectioilof subsystems coupled together by interaction

variables, and their objectives often are separable functions (or sums) of

subsystem objectives. If the interaction variables are fixed, or completely

free, then the system decomposes into completely independent subsystema. The

decomposition suggests a natural structure for control, whereby each subsystem

is controlled by a separate "lower-level" or "infimal" controller based on

a simplified subsystem model and local objectives. The interaction between

the subsystems is taken care of by an "upper-level" or "supremal" controller

who coordinates the lower-level units by manipulating their models or

objectives. The overall system then has the structure in Figure 3-8.

38

COORD INATOR

CONTROLLERS

SYSTEM1

* Figure 3-8 Two-level Hierarchical Control System

39

The kind of system under study is usually assumed to be of (or can be

manipulated into) the following form. There are n dynamical subsystems

represented by differential equations,

Wi(t) - fi(xiui.t) + vi(t) i-l,...,n (3.30)

where x is the state, ui is the control, and vi is the interaction input.

The interaction inRut vi(t) is related to the subsystem outputs by

In addition, there may be local constraints of the form

qi(xivui,t) 0. (3.32) -

The objective of control is to minimize

fi c(x(t),u(t),t)dt (3.33)

fto

where

c(x,u,t) - Lci(xiuit)

iisubject to the above constraints and possibly some constraints on u i(t).

The first step in applying hierarchical control is decomposition, where the

original global problem is replaced by a family of n decoupled subproblems

parametrized by a- (tl,...,an). It is necessary for the coordinability condition

to be satisfied, i.e., there exists a parameter such that the solution of

the decoupled problems yields the solution of the global problem. The second

step is an iterative procedure whereby the local controllers solve their

independent infimal problems using the coordinating parameters from the

coordinator and send the results of their solutions to the coordinator, who

then readjusts the coordinating parameters. This process is then repeated

until a satisfactory solution is obtained.

40

," -

There are two main approaches to decomposition and coordination in

hierarchical control. The first approach, called interaction prediction

in [94] and the direct method in [97], is as follows: The coordinator chooses

the interaction input v - (v ,...,v) and transmits it to the lower level.
- . The lower level problem then decomposes into

Min P t .ci(xi'u it)dt - Ji(vi) (3.34)
Ui to

subject to

i = fi(xisui't) + vi(t), (3.35)

q qi(xiuist) 0 . (3.36)

The upper level problem is

Min Ji(vi) (3.37)
~v i

which is equivalent to ensuring that

Vi(t) - Egij(xjt). (3.38)

Usually a gradient method is used to solve the upper-level problem. Two

difficulties may arise in using this approach. First, the v chosen by the

upper level may be such that the lower-level problems are infeasible. Second,

a gradient procedure for solving the upper-level problem may not be possible

because of the nondifferentiability of the functional involved.

The second approach is called interaction balance or the dual method.

Here the coordinator modifies the local objectives by dualizing the original

problem. With the price vector as the coordinating parameter a, the lower

level problem decomposes into

tl

Min ft1 ci(xiuit) + aTv i - Etg (zit)dt
ui t , i t 11

subject to the same constraints (3.35) and (3.36). Note that the controls

at the lower level now include both ui and vi. The aim of the coordinator is

* then to select O* such that the coupling constraint is satisfied. For

41

applicability, this type of coordination usually requires some convexity

condition on the objective functions and linear coupling constraints.

Because of its origins in mathematical programming, hierarchical control is

applicable mostly to deterministic problems and for off-line solution of open-

* loop controls. An extension to on-line hierarchical control can be found in

[99]. The periodic coordination approach of Chong and Athans [100] represents

one of the few attempts to merge hierarchical system theory and multi-person

stochastic control. In this work, the coordinator supervises the activities

of the lower-level system control and every now and then influences the lower-

level controller to:

(1) Set it straight - correct the estimates generated by the lower
level; these estimates are incorrect because the lower-level
controllers only have local information.

(2) Change its directives - generate new targets for the lower level.

(3) Change its incentives - so that the lower-level objectives can be
modified to conform with the global objectives.

There is a class of games which have some relevance in heirarchical control:

Stackelberg games are those where one player is called the leader and the others

are followers. The followers pick their strategies to optimize their local

objectives given the actions of the leader. The leader then chooses his

strategy to optimize his own objective. It can be observed that this structure

is very similar to the hierarchical structure introduced in this section if we

identify the leader with the coordinator and the followers with the lower level

decision makers. The research on the Stackelberg approach to multilevel systems

* [101],[102], however, is concerned more with finding the optimal strategies

in a centralized manner.

Except for the variations mentioned in the last two paragraphs, hierarchical

* control is essentially multilevel optimization theory applied to dynamic systems.

All the comments made on the advantages and disadvantages of multilevel

optimization theory also apply here.

4

42

3.1.5.4 Multimodel Control

If decentralized real time information of the decision makers is important,

decentralized stochastic control has to be used. On the other hand, we have

seen that the class of problems which can be solved is still quite small.

The complexity of the control algorithm in decentralized stochastic control

is due partly to the triple role played by the decision makerts action (control):

guiding the system's behavior, "learning" about the state and signalling to

other decision makers. There is no simple way to separate them, and since

the problem is one of optimization, the solution becomes very complicated

when all three functions have to be considered simultaneously. There have

,q been attempts to alleviate this difficulty by introducing distributed models

into decision making. Both Chong [103] and Tenney and Sandell (104],[105]

recognize that a centralized model is really not suitable for decision making

in a distributed system environment. It is more natural to give each

decision maker a model which is compatible with his information.

For example, in an interconnected system, the decision maker for each subsystem

employs a detailed model of his subsystem only and an equivalent model for
I.

the remainder of the system. Other decision makers behave similarly. Thus

the overall information structure consists of decentralized measurement sets

as well as decentralized model information on the same system. The multimodel

aspect of the information structure is not only realistic but also eliminates

the possibility of signalling in the system. This is so since the absence of

a common model on the implicit channel prevents the decision makers from

arriving at a signalling strategy.

Multimodelling has been studied [106] for interconnected systems strongly

coupled through their slow parts and weakly coupled through their fast parts.

The ith decision maker neglects the weak coupling parameters and the fast

dynamics of all the other subsystems. His model is then of lower dimension

than the original one and basically consists of a detailed model of his sub-

system and a coarse model of the external system. Note that the model is still

not well-defined until the actions of the other decision makers are specified.

In [106], it is assumed that the ith decision maker knows the objectives of

the other decision makers and thus the decision rules. The properties of the P

actual system controlled by the decision rules derived using the distributed

models can then be investigated.

43
I

Distributed decision making using a distributed model has been

considered by Tenney and Sandell [104],[105]. Each decision maker is assumed

to possess a model of its own exclusive subsystem and solves its local control

problem assuming incoming interactions will be the worst possible subject to

knowledge acquired through communication. This knowledge may be expressed

either as constraints on those interactions which may occur, as cost

functions on interaction sequences, or as simplified models of the external

subsystems. The coordination schemes proposed are schemes of communication

between the decision makers to reduce the uncertainty on the interaction inputs.

This approach is influenced to a certain extent by the work in artificial

intelligence.

3.1.5.5 Summary

Of the three approaches to distributed control surveyed above, two of

these, decentralized stochastic control and hierarchical control, have their

origins in team decision theory and multilevel optimization. Thus their

relative merits and special features have already been discussed in Sections 3.1.3

and 3.1.4. The last approach of Section 3.1.5.4 tries to distribute off-line

(a priori) information as well as real time information. This is intuitively more

attractive since it is probably more realistic. Whether this approach would

be successful or not depends on the search of good coordination strategies

for which not much is known.

44

3.2 REVIEW OF DISTRIBUTED ARTIFICIAL INTELLIGENCE

Distributed artificial intelligence (DAI) has only recently come to be

recognized as a discipline of the field of artificial intelligence (AI).

Hence, this review begins with a general overview of AI and its relevance to
II decision making, before defining DAI and its relationship to AI and

distributed systems. Then, areas of recent research in DAI are examined,

including foundations; architectures; protocols, languages, and tools;
hypothesis formation; and planning and control.

3.2.1 Artificial Intelligence Overview

AI (or "intelligent systems") is a largely experimental and engineering

discipline engaged in an attempt to produce intelligent behavior in machines

* (typically including a computer). The field of Al is now over 25 years old.

It grew at the intersection of the fields of software systems, theory of

computation, cognitive psychology, philosophy, and cybernetics. While the

field is by no means mature, a body of concepts and techniques has been

developed [1071 and shown useful in a number of fruitful applications [108J.

* These successful applications include proving mathematical theorems, solving

mathematical problems symbolically, inferring the chemical structure of a

compound trom data gathered by scientific measurement devices, diagnosing

diseases and recommending therapy in a number of areas, planning molecular

genetics experiments, and geological prospecting. Applications with military

relevance include image understanding for a number of types of sensors,

(printed) natural language understanding, speech understanding, acoustic

signal understanding, situation assessment, and mission planning.

The central notions of AI are heuristics and symbolic processing. One

example of heuristics are the "rules of thumb" that guide the everyday

existence of people. A heuristic, in contrast to an algorithm, may not

produce an optimal solution to a problem, indeed, may not produce a solution

at all. But heuristics provide a means of formalizing a way to solve a

problem when more formal, guaranteed approaches don't exist or are

inefficient. Symbolic processing, as opposed to numerical processing,

involves the manipulation of structures of objects (e.g., words) that

represent concepts. Whereas symbol processing can be either algorithmic or

heuristic in nature, in general, it is clear that much of the functioning of

45

* intelligence is nonntueric in character and that symbolic processing is

usually more understandable by humans than numerical processing.

Applied Al requires a system to have a large body of knowledge (the

"knowledge base") about a particular problem domain in order to produce a high

level of performance. Such knowledge-based systems are also "expert" systems

if their heuristics have been gleaned from human experts. These performance-

oriented systems are contrasted with general problem solvers based on weak

heuristics, and general information processing models of human memory and

cognition.

The specific areas of AI that are most relevant to decision making are

knowledge representation, problem solving and inference, hypothesis formation,

planning, and control of environment.

Knowledge representation is the art of selecting the method(s) by which

the static information (e.g., heuristics) and dynamic information (e.g., a

• partial hypothesis of a scene) are to be represented in an AI system so that

it will produce a good solution efficiently (or even at all). The standard

forms of AI knowledge representation are predicate calculus (or formal first-

order logic), production rules (antecedent-consequent rules, if-then-else

II rules), semantic nets (relational trees and networks), frames (templates,

prototypes), computer programs (procedural embedding), and combinations of

these.

Problem solving involves the inference of new knowledge (e.g., a

hypothesis or planning decision from the current knowledge available to the

system). Inference can be either inductive (concept formation, generalizing

or learning from previous instances) or deductive (inferring specific facts

* about a specific situation). Inductive techniques include learning by example

and reasoning by analogy. Deductive inference can be either top-down (goal-

driven, backward chaining) or bottom-up (data-driven, forward chaining).

Among the more important deductive techniques are formal theorem proving,

* problem reduction (AND/OR goal trees, divide and conquer), demons (spontaneou

computation), heuristic search, generate and test, hill climbing, means-ends

analysis, and constraint satisfaction.

Most AI problems may be divided into a static analysis of the

46

L | . .

environment, planning a response, and monitoring the environment during

execution of the plan. Hypothesis formation is the interpretation or

understanding of empirical data or real-world situations. AI research has

addressed a wide range of hypothesis formation tasks, from inferring molecular

structures from mass spectroscopy data [1091 to inferring goals and intentions

of military forces from their recent activities. The key problem for such

systems is dealing with the constraints imposed by the real world: missing,

incomplete, erroneous, ambiguous, and redundant data. Simple mathematical

7 formalisms, such as scalar certainty factors [1101 have been developed for

dealing with these uncertainties and for evaluating multiple, competing

hypotheses. Richer comparison structures, such as those based on fuzzy sets

for decision making [1111 and control [112], need to be introduced.

AI planning involves reasoning about a current situation, a goal, and a

set of feasible operators to produce an ordered set of operators that, when

applied to the current state of the world, will produce the goal state.

The uncertainty of how useful a plan will be when it is finally executed

motivates the area of AI control. Two approaches are to use contingency

(conditional or nonlinear) plans or to do incremental, real-time replanning.

Much of this work has been done in the area of robot arm control, but has been

done more recently for such tasks as air traffic control [1131.

3.2.2 Applicability of Artificial Intelligence to Decision Making

It should be obvious at this point why AI is relevant to decision making,

especially in Air Force command and control situations, where decision making

is distributed, often done in real time, and often based on large quantities

of data. Decision making under such constraints is a highly intellectual

activity, one that might be greatly improved by some degree of automation.

Decision making involves assessing a situation, making a decision based upon

this assessment, carrying out the decision and, monitoring the execution.

These three tasks correspond closely to the AI areas of hypothesis formation,

planning, and control. In various contexts AI has squarely addressed the

problems of understanding a situation based upon sensor or nonsensor data,

integrating or fusing data of different types, choosing the best alternative

of hypotheses and plans (decisions), automating the development of Al systems

by allowing the definition of heuristics by domain experts, fostering a man-

47

machine symbiosis with interactive computing, and developing trust in the

computer assistant by providing facilities to explain the machine's reasoning

in an understandable way.

3.2.3 Distributed Artificial Intelligence: Definition and History

Distributed AI may be defined in a number of ways. A weak definition is

that DAI encompasses any AI endeavor that utilizes a distributed computer

system or architecture. This definition admits a spectrum of possible degrees

of distribution and levels of communication. An AI system must have some

degree of distribution of data and/or processing and/or control and some

degree of communication to be considered a DAI system. Only the two extremes

of the spectrum are not included: (1) a totally centralized system in which

all processing takes place at one node and no external communication is

required, and (2) a totally independent parallel system in which more than

one node exists but no communication between nodes takes place.

A number of AI systems that are not DAI systems because of restriction 1

nevertheless were important precursors to real DAI. These systems run on a

centralized computer, but are divided into a number of separate problem

solving entities, typically by the different types of problem-solving know

ledge present. Examples of such entities include "knowledge sources" in the

HEARSAY-II speech understanding system [114] and the SAP undersea acoustic

signal understanding system [115]; "experts" in the PSI automatic programming

system [1161, and "beings"[117). If the computational grain sizes (i.e., the

average computing time per invocation) of the individual entities are large,

they are often scheduled as independent, communicating multiple processes.

HEARSAY-Il was also run on a centralized multiprocessor, C.mmp [118].

However, although these systems exhibit some of the organizational and

processing behavior of DAI, control and data are quite highly centralized.

The first true DAI systems, under our weak definition, are those that do

problem solving at one node and merely receive data, possibly after some non-

AI processing, from other nodes. Some prototype systems of this type exist,

e.g., the SAP signal understander [115] and LADDER for natural language

access to a distributed database [1191. These systems introduce some of the

complexities of distributed systems because of their data distribution. The

* issues include reliability, redundancy, missing data, communications

48
S

protocols, response time, etc. But such a system is still fundamentally a

centralized AI system within a distributed processing system.

A decision making system can be described in terms of three levels of

structures. The first level is data such as sensor measurements, known facts

about friendly and enemy forces, knowledge about the environment, etc.

The second level is processing, i.e.,inference rules which can be applied

to the available data to make further conclusions and decisions. Examples of

such rules would be the Kalman filter, which estimates the target's position

from the available raw measurements; the linear simplex method, that computes

the optimum resource allocation from the knowledge of the linear resource

constraints; and a HYCIN (IF-THEN) inference rule which determines the nature

of a patient's illness on the basis of the known symptoms.

Finally, the third level,the so-called Meta-Level, is the control

structure of the decision making system. This level is responsible for

0 deciding which inference rules from the second level to apply to which portion

of data, and in what sequence.

This division into the three levels is not clear cut in most cases

because, for example, the dividing line between data about the world model and

the inference rules about the world could be very blurred. However,

practically all the existing AI methodologies and systems follow the general

pattern of this three-level system.

When we talk about a distributed AI system, we need to specify the nature

of the distribution present. Distribution can occur on any (or all) of the

three levels of the system. Different possible combinations of distribution

vs. centralization at various levels give rise to systems greatly differing

in their distribution structure, whereas systems with the same distributed

levels tend to have a lot of structure in common.

We now introduce our strong definition of DAI. It requires that AI

problem solving take place at more than one node in the distributed network

[1201. This definition forces control, data, and processing to be distributed

to some degree. New and difficult Al issues must be addressed, including

decomposition of problems for a distributed solution, and structures and

49

L

protocols for sharing and passing problem solving, control, static knowledge

bases, supporting structures for hypotheses, hypotheses themselves, plans,

etc. DAI systems of this type will use the techniques developed in the areas

*" of distributed processing and distributed data bases, but will necessarily

push these disciplines into new areas because of the richness of the

structures used by AI for problem solving, control and knowledge

representation.

Few viable prototype DAI systems exist today, and virtually all of these

are weak DAI systems. This is in contrast to the state of centralized AI

prototypes, which number in the hundreds. Work on strong DAI probably started

with work on a distributed problem solving protocol called contract nets

[121,122]. Research impetus for the field was generated by the question of

the role of AI in distributed sensor nets [123]. The first workshop

specifically on DAI was held less than a year ago [1201. The remainder of

this section on DAI surveys the aspects of this emerging field that are most

relevant to distributed decision making in a military command, control, and

communications enviroment.

3.2.4 Foundations

Designing a successful DAI system involves 1) creating local decision

making systems, 2) specifying protocols for their communication and

collaboration, and 3) deciding on the architecture for the decision making

group (i.e., which nodes communicate with each other, which, if any, nodes are

supervisors, which are subordinates, etc.).

At the present, the DAI researchers are tackling the first task by

borrowing the already existing centralized AI decision making systems (the

HEARSAY-II architecture, in particular) and using them as prototypes (with

slight modifications) for the local decision makers.

Most of the fundamental research in DAI has been devoted to the second

* and the third tasks. In particular, Smith & Davis [122] have concentrated on

the design of flexible communication protocols, whereas the RAND group has

been initially more concerned with the question of logical system

decomposition, hierarchical vs. heterarchical committees and other

* architectural issues. Finally, Lesser & Corkill[124-126] are attempting to

50

address both issues by creating a distributed testbed with pre-developed

communication protocols and capabilities to simulate any user-specified

network architecture.

Kornfeld is designing DAI systems to take advantage of the parallelism

possible (1273. If a problem may be solved by a number of relatively

independent techniques, they may be attempted in parallel until one succeeds.

A refinement of this idea allows heuristic measures of progress to determine

which approach to spend future resources on. This approach is analogous to

parallel heuristic search, and may be useful in non-distributed, parallel

systems as well as in DAI.
i

3.2.5 Architectures

A fundamental issue in DAI is system architecture, especially what types

of DAI architectures are feasible and which one is best for a certain class of

* problems. DAI systems can be organized by both top-down decomposition and

bottom-up synthesis. In fact, a combination of the two approaches is probably

best. The top-down approach attempts to break a problem solving task into

relatively independent subproblems that may be feasibly distributed (e.g.,

tasks that do not require the same hypothesis structure at every point in

time). The bottom-up approach starts with either a required or proposed node

and considers its relationship to other nodes to determine designs for local

processing, local network topology, appropriate paradigms to use for

cooperation with other nodes, etc. Possible topologies include hierarchies or

trees, networks or graphs with fixed or dynamic logical substructures, linear

systems, homogeneous matrices, etc.

A study has been made of a (relatively) simple distributed problem

solving task, that of solving a crossword puzzle by a group [128]. Both

hierarchical and heterarchical ("anarchic committee") architectures were

tried. The hierarchical approach used a tree of problem solvers, each of whom

* was allowed to communicate only to his single superior and three subordinates

(or section of the puzzle board, for the bottom row of the tree). The

heterarchical approach dispensed with the two levels of management nodes and

allowed horizontal communication on the main level to take place within ad hoc

committees as needed. Although the heterarchical architecture gave the best

performance, it isn't known when, if ever, the hierarchical approach is

51

ao

better. Although the crossword puzzle problem is a fairly simple task, a

number of design rules for DAI systems have been proposed. They seem to be

very general guidelines, of too high a level, too vague and nonspecific, to be

of great use without much refinement.

The first successful DAI system was created on the basis of HEARSAY-

11[129]. HEARSAY-II is an AI hypothesis formation system (initially designed

for voice recognition) with centralized control and data base but with

multiple knowledge sources (decision makers) that attempt to derive important

results from the data, working concurrently, and communicating their results

by posting them on the global blackboard. Since all the knowledge sources had

access to the blackboard, all of them were able to utilize the new results

derived by any one of them as soon as this result was posted on the

blackboard.

The architects of HEARSAY-Il, Lesser & Erman, have since created a truly

distributed AI system, i.e., a system with several control systems with local

data bases working in parallel. They took three complete HEARSAY-II systems

together, each with its own local blackboard, gave each one of them a partial

view of the spoken message to be deciphered, and allowed them to communicate

their most important (high-level) findings through one common global

blackboard.

As a generalization of this effort, Lesser & Corkill[124,125,1301 are

presently working on a general simulation testbed for hypothesis formation.

The current area of application of the testbed is in the area of street

traffic monitoring. Although the application area is different, the HEARSAY-

II architecture proved to be versatile enough to be still applicable. The
testbed works in the following manner: The user is asked to specify the

number of decision making nodes present (each one a copy of HEARSAY-If) and to

specify the desired network architecture, i.e., which nodes have communication

links between them, as well as the level and amount of communication allowed

between the nodes. The simulation testbed then simulates the performance of

this architecture, thus allowing the user to compare different plausible

distributed architectures in order to choose the best ones, as well as to

derive general conclusions about distributed network structures.

52

In order to allow more flexible forms of control among nodes in the

system, Lesser & Corkill integrated goal-directed control (in the spirit of

the contract net ideas developed by Smith & Davis (see below)) into the system

Carchitecture. This allows each node not only to communicate its conclusions,
but also to ask other nodes for help with verifying hypotheses which are

needed for making some of that node's local conclusions. This new structure

of the testbed is more general and more flexible, allowing for applications in

various areas of planning, as well as hypothesis formation. These

applications, however, are yet to be developed, and most of the design issues

are yet to be resolved.

In the area of planning and control, a number of alternative

architectures for the distributed control of fleets of aircraft and cruise

missiles have been proposed [1311. The best choice depends upon the

requirements and constraints of the specific problem.

* Davis advocates a top-down decomposition of a DAI problem into

potentially independent or nearly independent subproblems [1321. Then

additional internodal communication is introduced bottom-up as necessary to

eliminate the chance that no solution will be found or that solutions to

subproblems will be incompatible.

Hayes-Roth lists six dimensions along which problems may be distributed:

space, time, instrumentality, resources, information, and interpretations

[1331. In addition to these general dimensions, there may be additional,

problem-specific dimensions.

3.2.6 Protocols, Languages, and Tools

* The contract network 11211 is one of the few attempts at a general-

purpose problem solving protocol. As the name indicates, the cooperation

between nodes is achieved by way of contracts between nodes. The current area

of application of that system is in the area of hypothesis formation in

distributed sensor networks. Each node is equipped with several sensors of

various types, covering a subarea of the whole battlefield. Contracts are

negotiated using the "announcement-bid-award" protocol sequence. In its

efforts to track and classify the targets in its area of coverage, a node

often encounters a subproblem that it cannot resolve, because of its

53

"U limitations with respect to the area of coverage, available sensor types,

sensor error, etc. In such cases the node sends a "Request For Proposals"

message to all possibly eligible friendly nodes.

This RFP message consists of task specification, eligibility

specification, and bid specification (i.e., information requested from each

bidder in order to determine the best one). If the contract needs to be

fulfilled under time pressure, the expiration time for the contract would also

be listed.

All the nodes that meet the eligibility specification for the task and

have the available resources to tackle the task answer the RFP message with a

proposal bid in which they specify their qualifications, such as the types of

sensors available, the position and area of coverage of these sensors, etc.

On the basis of the bids received, the "sponsoring" node chooses the best

contractor (or several sub-contractors) to do the job. This selection is

* announced to the chosen bidder with an award message, which specifies in

detail the task to be performed. The structure of the network is democratic

(or what Hayes-Roth and Wesson call anarchic), in the sense that all nodes are

treated as equals, each one being a supervisor for some contracts and a

contractor for some other contracts. Each contract is thus arranged on the

basis of need and merit.

One of the important issues that this contract net approach will

encounter will be prioritizing work on contracts. If a node has several

contracts to work on in addition to its own work, prioritizing the work on all

these tasks could be a real problem. A first-order solution to this problem

could be achieved with the help of contract supervisor-specified priority

* ratings of each contract task. These ratings could change during contract

work by either the supervisor or the subordinate as the circumstances change.

The portion of time devoted to working on each task could then be proportional

to the priority rating of that task.

The idea of contracts and negotiations also plays the main role in the

cognitive science work of Fikes[1341 at Xerox, who postulates that work in

such cooperative domains as offices is achieved in terms of negotiating,

* making, and fulfilling commitments to the other workers.

54
*i

. - .--

As mentioned earlier, standard Al systems provide many ideas for DAI.

Similarly, the succession of Al languages (e.g., QA4, QLISP, PLANNER,

CONNIVER, IL, etc.) and concurrent languages (Concurrent PASCAL, ADA, etc.)

(7 are providing the basic ideas for languages for DAI. Of particular note is

the succession of languages at MIT, starting with PLANNER and ending with

ACTORS. The original purpose was to provide mechanisms for goal-oriented

function invocation. Recent work on the APIARY network architecture is aimed

specifically at using message-oriented languages for distributed computing,

io including DAI [135].

Tools for DAI are obviously weak at this stage in the field's growth.

The LADDER system provides a natural language front-end to a distributed data

Ubase [1191. This front end could evolve into a fairly general Al system that

interprets an English request in terms of its knowledge of the network

topology and what capabilities each node has. Other relevant work is now

being done on AI models for effective user interfaces to distributed systems

[136]. Finally, the ROSIE language and program for developing rule-based

deduction systems allows a number of such systems to communicate in a

distributed fashion [137]. This is the first step toward automating the

construction of one class of DAI systems.

3.2.7 Hypothesis Formation

The AI area of hypothesis formation or interpretation is one approach to

the Air Force problem of situation assessment. However, most AI work to date

has addressed the lower-level problems of signal understanding for images,

speech, and other forms.

The Rochester Intelligent Gateway (RIG) distributed computing network

provides protocols for image transmission in support of distributed image

understanding, both within RIG and over the ARPAnet [138]. Relaxation methods

have been applied to understanding images to produce highly parallel

algorithms that could be distributed (1391.

The HEARSAY-Il speech understander [129,1401 used a distributed model of

expertise, in which the hypotheses and most other data resided in a common

data base, but expertise on phonemes, syllables, words, syntax, semantics, and

pragnatics resided in separate knowledge sources. The distributed version of

55

L

o HEARSAY-II was discussed earlier.

SLAP (Surveillance Integration Automation Project) is a system that was

* based on the HEARSAY-II architecture, but was adapted to the problem of under-

sea acoustic signal fusion and understanding [115]. The key problem is the

* integration of signals from a distributed array of remote sensors. Another

difference from the speech domain is the need for continual operation over

longer periods of time than the ocean equivalent of one sentence of speech.

Recently Advanced Information & Decision Systems has developed a new, strongly

distributed system for situation assessment [1411. This system is possibly the

first to take a combined AI and control theory approach. However, when viewed

as DAI, it distributes the hypothesis formation functions of SAP to each

sensor location and relies upon nearest-neighbor communication rather than

centralized communication.

The work on functionally accurate hypothesis formation by Lesser &

Corkill[126J may be noted again here. Whereas distributed HEARSAY-If was

purely bottom-up hypothesis formation, and use of contract nets imposes a

primarily top-down orientation, the work on functionally accurate techniques

recognizes the need for a mixture of both top-down and bottom-up. Perhaps

SlAP provides the best balance of top-down and bottom-up processing to date:

most processing was driven by the new data entering the system, yet high-level

knowledge sources could also impose subgoals on lower levels. A more complete

discussion of the design alternatives in AI hypothesis formation is found in

11421.

The work by Wesson & Hayes-Roth[1281 discussed earlier on distributed

puzzle solving is aimed at providing a foundation for distributed situation

assessment, but no computer system has been developed.

3.2.8 Planning and Control

Research in the area of distributed AI planning and control is under way

at RAND[131]. They approached developing a theory of cooperative AI control

as an empirical investigation. That is, they chose a particular area of

application- control of air traffic - and intend to develop the experience and

results derived from the research in this area into a general theory of

distributed control. To date they have developed an initial version of a

56

I-

"flexible architecture" testbed (similar in spirit to that of Lesser and

Corkill), and created six different major distribution frameworks. They are:

geography-centered distribution (based on controller's positions on the air

field); function-centered (based on types of aircraft to be controlled);

plan-centered (based on parallel problem solving ideas, similar to Kornfeld);

hierarchical (based on level of abstraction); object-centered autonomous (a

silent, autonomous structure based on aircraft self-planning) and object-

centered cooperative (a self-planning based structure in which communication

is used).

Initial simple experiments were conducted to compare performances of the

cooperative versus the autonomous architectures as a function of air traffic

density. Not surprisingly, the autonomous system performed very poorly under

high density, but equally well under moderate density. These results are what

one would expect, but they point out a hope that more meaningful results will

be derived in the future under much more elaborate experiments.

Carl Hewitt [143] proposed a mathematical notation in the form of the

PLASMA system for modeling the roles of .everal controllers (actors), their

effects on the environment, and their knowledge about the other actors and

their actions and methods. This system was then applied to cooperative

solving of some simple mathematical problems. Since this is a very high-level

design structure, the success of future applications of this structure to

fairly complicated situations will depend heavily on the properties of the

lower-level structures which, perhaps, need to be designed separately for each

type of application.

Work in parallel problem solving has been done by Kornfeld[1441. He

introduced the concept of "combinational implosion". '"hen a problem is to be

solved, attempting multiple approaches simultaneously can be advantageous

because the ultimately successful approach cannot be known in advance.

Partial information can be used to reapportion the system resources in ways

that minimize the overall expected running time." Based on Kornfeld's ideas

the Ether language has been developed at MIT for running highly parallel

programs. A variant of Ether was used for implementation of another idea of

Hewitt & Kornfeld[1451, that of "Scientific Community Metaphor". It argues

that the scientific community is an excellent example of a highly successful

57

4 and highly distributed problem solving system. The problem solving paradigm

* that the authors believe is at work can be described as follows: When a

problem is posed to the system, proposers suggest possible solutions.

Proponents attempt to show the solutions work and skeptics attempt to show

they will not accomplish the goal. Evaluators examine partial results as they

accrue and reapportion processing power to the various approaches in ways that

fit current evidence. This paradigm could provide a useful framework for some

of the future distributed problem solving systems.

In the area of natural language, Allen & Small[146] are working on task-

oriented dialog comprehension. Three loosely coupled levels of analysis are

involved: task reasoning, communication goal reasoning and linguistic

reasoning. They are now in the process of implementing their ideas. Work on

planning in the highly unpredictable world of multi-agent planning has also

started at MIT by Davis, et al[1471. It is also based on the negotiation

paradigm.

A similar task of developing formalisms for reasoning about other agents'

cognitive states and knowledge has been addressed in parallel by Appelt, and

by Konolige and Nilsson[1481 at SRI. Appelt's work[149] is close to the

cognitive science approach taken by Allen, Cohen & Perrault[150,151] and is

similar in spirit to Davis's work. A planning system called KAMP has been

developed on the basis of this work. In the area of planning Konolige and

Nilsson have been looking at ways of modifying the classical centralized AI

systems (such as STRIPS and situation calculus) to accommodate multiple

agents. This work is still in the beginning stage.

3.2.9 S,-mary

This section has attempted to provide a sunmary survey of the important

work conducted in the area of distributed AI. As we have seen, there have

been several attempts to search for theories of distributed AI. At the

present, these theories are rather simple and high level, and much more

substance is needed to make these ideas workable and applicable. At this

point, the development of formalisms has not lead to a general theory for

practical system construction, and the efforts in domain-specific problem

solving have been more successful. This should come as no surprise, since

artificial intelligence (and especially, distributed AI) is in its formative

stages and,therefore, is mostly an empirical science.

58

4. INTERACTIVE PLANNING

As we discussed earlier, the most promising approach to the DDM problem

is bottom-up, i.e., starting research with a particular scenario and then

generalizing the derived results and methodology. The general planning and

control senario that we chose was discussed in Section 2.2.

In this chapter we are going to give detailed mathematical definitions of

the chosen scenario and describe the rules of the computer simulation game

based on this scenario (see 4.1); we will then explain the structure of the

man-machine interface, discuss its planning capabilities, and give a small

detailed example of how one may play this game.

This example game was played in a centralized fashion by one player. But

this centralized planning mode should be viewed as a local sub-module of the

distributed planning system. In Section 4.3 we will describe the structure of

the distributed planning system and some of the experiments that we have run

or plan to run using this system.

4.1 SCENARIO FOR DDM INTERACTIVE PLANNER

In this section we are going to describe the details of our initial DDM

scenario. This scenario is a simplified model of situations encountered in

modern and future real-life aircraft mission planning. However, this highly

simplified model has much of the richness and complexity encountered in its

real-life prototypes. Our scenario has been implemented on a computer in the

form of a simulation game.

The game is played on a rectangular board, divided into square grid

cells, each cell representing a land area of a certain size (say, 20 mi X 20

mi). Some of these cells are occupied by combat forces. These forces include

enemy targets that we wish to attack, enemy defenses that protect approaches

to the targets, and friendly missile launchers with a number of missiles on

board of each of them. In Fig. 4-1 we have an illustration of such a

scenario.

59
I

Initial fuel is 25
T2 T4 1 T1 100 0 2 200 0

Ti 02 T3 2 T3 150 0 T4 100 0
D3 D5 3 D1 .99 D2 .99

D1 D4 D6 4 03 .99 04 .99
5 D5 .99 [6 .99
6 Li .99 T M1 M2
7 L2 .99 Y M13 M4

Li L3 8 L3 .99 Y M5 M6
L4 9 L4 .99 Y M7 M8

L2 10
11

12
13

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4-1 Sample Scenario

In this example there are four targets: T1 in cell (1, 1), T2 in cell

(5, 1), T3 in cell (9, 2) and T4 in cell (12, 1). These targets have

different military values assigned to them. T2 is the most valuable one: it

is worth 200 points. T3 is worth 150, while T1 and T4 are each worth 100

points. These targets are protected by six defensive SAM sites: D1 through

D6. Their threat is modeled in the following way:

The cell that the defense is located in presents immediate danger to the

aircraft and missiles flying over it; that is, there is a significant

probability that the missile (aircraft) will be shot down. Our current model

places this probability at 0.30. In addition to its own cell, the defense

also threatens the eight cells adjacent to it. In each of these cells the

defense has a slightly lower, currently 0.20, probability of shooting down the

missile that is flying there.

If a missile attacks a defense, the probability of kill is equal to the

probability that the missile survived to the defensive site multiplied by a

probability of kill constant for missiles against defenses. We are using 1.00

* for that constant. Similarly, if a missile attacks a target, its probability

of kill is currently modeled as 0.80 times the probability that the missile

reaches the target. We have also assumed an additional threat that launch

platforms have a 0.01 probability of being intercepted and shot down. This
6 helps to prevent the decision maker from leaving missiles on launchers for

unreasonable lengths of time.

60
6

All evaluations are performed in a probabilistic average sense. That is,

the evaluations are based entirely on expected value calculations. If a

missile is shot down with probability 0.30, then it continues with a

C probability of existence of 0.70. We do not currently use the Monte-Carlo

technique of generating a random number, deciding the outcome of the attack on

the missile, and then either removing the missile or letting it continue

unharmed.

There are four launchers in this scenario: Li through L4, each carrying

two missiles: M1 and M2 on Li, M3 and M4 on L2, M5 and M6 on L3, M7 and M8 on

L4. The following assumptions are made:

- Each missile has a certain amount of fuel on board. In our case each

missile has 25 units of fuel.

- A launcher is presumed to have a very large amount of fuel, sufficient

for the completion of the whole mission.

- A launcher can fire a missile at any time.

- Each offensive piece (a launcher or a missile) can move in one of the

eight basic directions.

- Each move up, down, left, or right, takes two time pc-i' "d uses up

two units of fuel.

- Each diagonal move takes three time periods and three units of fuel.

- If a missile exhausts all its supply L' fuel during flight, it falls

on the ground and explodes in the cell it is currently over.

In order to model and address the issues of incomplete information,

recognizance, contingency planning, and mid-course re-planning, there are

several pop-up defensive threats placed somewhere on the board by the

computer. The player does not initially know where they are. However, at the

moment a missile enters the threat region of a pop-up defense, the pop-up

threat becomes known and subsequently acts like any other defense. Every time

a new defense pops up, the player encounters a new situation and may need to

make some mid-course changes to his plans.

61

I'

The object of the game is to destroy the largest expected value of the

*opponent's targets, i.e., to maximize the player's score. This score is equal

to

NT
J~l [V1 (Tj)-Vf(TJ)]

where NT is the number of targets, Vi(T J) is the initial value of T , and

Vf(T) is the final value remaining to T Other factors such as the

safety of launchers, nu.mber of unused missiles, and explicit value of

destroying defenses can also be incorporated into the performance measure,

if desired.

4.2 THE LOCAL PLANNER

4.2.1 Functional Description

In using the planning system, the player interacts with the computer by

using a set of functional commands to make decisions about the strategy to

implement. The decisions that the player needs to make are:

5) Which targets to attack and which missiles to assign for each attack.

6) Which defenses to take out for easier access to the designated targets

and which missiles to use for these attacks.

7) Where and when to launch each missile.

8) How to bring the launcher to the points of launching.a
9) Within each individual missile-on-target or missile-on-defense attack,

which path to fly so as t3 minimize the exposure to enemy defenses, but still

operate within the fuel constraint.

4
If there are several pop-up threats on the field, the player should also

be prepared to do some re-planning in the future, and thus should have

contingency planning guidelines thought out in advance.

Examples of the commands that the player can use to execute his plans on

the computer are:

62

1) LAunch M 3 - launch missile 3 now.

2) MOve M 5 to (7, 3) - move missile 5 to cell (7, 3) (presumed to be

adjacent).

3) KIll M 4 - detonate missile 4.

4) ENd - end of the commands for the current time period, go to the next

time period. (Time periods are also called update times).

5) OPtimal path from (XO, YO) to (Xl, Yl) with F units of fuel - this

command asks the computer to compute the best (optimal) path from the cell

(XO, YO) to the cell (Xl, Yl) within the available fuel constraint.

6) SEnd missile i along the optimal path to the target (or defense) j

with specified fuel amount.

7) STay - Causes specified vehicle to remain stationary (stay) for

specified length of time.

8) SKip - Skips n updates, i.e., lets the computer know that no new

*commands are going to be given for the next n time periods.

9) DIsplay - Displays the current position on the screen.

The commands (5) and (6) above are interesting because they presume

intelligent capabilities on the part of the computer. They let the human not

worry about the complicated task of finding the optimal (least dangerous) path

between two points, thus allowing him to concentrate on higher-level,

strategic issues. Command (6), in addition, allows the user to send out a

missile (or a launcher) on a trajectory and not to worry about having to

continuously guide it all the time.

The DDM game that we have implemented can serve as a basis for

development of an interactive mission planning decision aid, in both its

centralized and distributed versions. Since there is a strong need in the

military, especially in the Air Force community, for such an aid, we are going

to further develop our DDM interactive planner with an eye towards the goal of
0 making it into a real planning asset, especially in the distributed version.

The smart commands described above are the first steps towards that goal.

63

Among the new planning capabilities that we are presently implementing are:

- Capability to evaluate the goodness of a set of attack plans

(assignments) before actually executing it.

-, - Capability to create several plans and to let the computer evaluate

which plan is the most promising one.

- Capability to deal with partial plans, i.e., facility to evaluate the

probabilistic outcome and consequence of a proposed new assignment command,

taking into account its interdependence with the previously input commands.

- Letting the computer generate valuable suggestions with regard to

creating good (high-valued) attack plans, as well as the timing of the

attacks.

The above capabilities were listed basically in the order of their

difficulty to implement. The first capability is a challenging task to

implement, but it is known how to do this. The last task, on the other hand,

is a difficult mathemati problem. In the next chapters we are going to

discuss some algorithms applicable for this problem of automatic generation of

optimal, or near optimal, plans.

Another set of capabilities that we are designing concern embedding the

local planner into a large distributed planning system. These capabilities

include:

- Capability to send high-level descriptions of intended attack plans.

- Being able to respond to and comment on other players' plans.

- Capability to evaluate the effects of other players' plans on one's

own forces and plans.

- Capability to coordinate plans with other players.

4.2.2 Example of a DDM Game

*• In this section we shall go through an example of a DDM game. This will

help the reader to understand the operation of our interactive planning

64

L

system. For continuity, we use the same board position as was discussed in

- - Section 4.1:
Isitial fuel is 25

T2 T4 I T1 100 0 T2 200 0
TI D2 T3 2 T3 150 0 T4 too 0

D3 Is 3 D1 .99 D2 .99
DI D4 D6 4 D3 .99 D4 .99

5 D5 .99 06 .99
6 L1 .99 T 1 12
7 L2 .99 113 14

Li 3 8 3 .99 Y 5 16
L4 9 L4 .99 Y 7 18

L2 10
11
12

U 13
1 2 3 4 5 6 7 8 9 10 11 12 13

The tine is I

The scoreboard on the right has the following meaning: the first number

after the symbol for targets (e.g., T3) is the current value of the target,

the second number is the value already extracted from it. Thus, T3 has a

current value of 150 and no value, i.e., 0 has been extracted yet. There are

six defenses. The number next to the name is the current probability of

existence. Four launchers are present in the battle. Each of them starts

with a 0.99 probability of existence. Each launcher has two missiles on

board; for example, Li has Ml and M2, and L3 has M5 and M6. All missiles are

presumed identical and all have 25 units of fuel to start with. The

probabilities of kill between various objects are as specified in Section 4.1.

Now, let us start playing the game. The game clock shows 1. It's our move.

First, we decide upon the plan of action. We may be tempted to send all

* eight missiles against the targets, say, two missiles against each. How well

would we do? Let us see how easy it is to penetrate the defenses. We ask the

computer to show us the best path from the spot where LI is to target T2.

65

-S

>>op path from -,X Y) 2 8 to "CX Y) 5 1 ,uel.> 25
-ptzma! survival is .45

* 1ime to go is 17

- T4 1 11 100 0 F2 200 0
Ti $ 13 2 F3 150 0 F4 100 0

$ 3 D5 3 D1 .?9 02 .YT
D $ 04 D6 4 03 .YY 04 .99

S 5 D5 .99 116 .99?
$ 6 L1 .99 T il M2

$?L2 .99 Y M3 M4
$ 3 8 L3 .99 Y f5 M6

L4 9 14 .99 Y M7f8 h8
L2 10

11
12
1,3

1 2 3 4 5 6 7 8 9 10 11 12 13

As you can see, there is only a 45% probability of getting to T2 intact,
and therefore, only 36% of killing it with the first missile. The second

missile would get another 25% of the value, but even the two of them combined

will derive only 61% of the value. Similar obstacles will hinder our

performance against the other three targets.

Therefore, we need to attack some defenses first in order to create holes

in the defenses. Good candidates to attack are D2, since it controls access

to Ti and T2, and D5, since it controls access to T3 and T4. In order to

thoroughly destroy them, let us use two missiles against each, and then send

the remaining four missiles through the holes against the targets, as seen in

the following plan:

M *D
1 2

M 3 D2M3 2 I

M 4 TD

M5 15

M 7 TD

M6 -D5

M -T

M2 "T1

M4 2

M7 3

8 4

66

*I

We are ready to start execution. We launch missiles MI and M3 and send

" them against defense D2. We also bring launchers Li and L2 closer to the

enemy and then launch their remaining missiles (M42 and 4) when 11 and 143 are

ready to hit D2. We need to keep 12 and M4 behind so that they don't get shot .1

down by D2 before it is taken care of.

The missiles and launchers start flying. For a while, we don't have to

make any new assignments. Then at time 9, when the first wave attackers get

close to their chosen defenses, we launch the remaining four missiles, sending

42 against Ti, 144 against T2, 147 against T3, and M8 against T4. The next

interesting event occurs at time 11:

You uere attacked by a pop-up near 4,4

lotal score is 0
T2 14 1 T1 100 0 T2 200 0

T1 D2 13 2 13 150 0 T4 100 0
D 07 D3 D5 3 D1 .99 D2 .99

DI "I D4 D6 4 03 .99 D4 .99
*1 M5 5 D5 .99 D6 .99
M4 R6 *2 6 D7 .99

7 MIl .79 't 15 R3 .99 t 15

8 i .99 n 15 M6 .99 n 15
9 M2 .91 t 23 M4 .91 t 23

10 M7 .91 t 23 M8 .91 t 23
11 *l:N3 M2
12 , 2: M1 NO
132:N? MS

1 2 3 4 5 6 7 8 9 10 11 12 13

A pop-up threat, D7, has attacked Mi, reducing its probability of

existence down to 79%. This defense also threatens to keep on shooting at Ml,

M3 and all the following missiles along their way to D2. Thus, attacking D2

would now do very little good. D7 itself is no easy prey since it is heavily
0

protected by DI and D2 and since its destruction will not solve the problem of

reaching T2.

Thus, we need to change our plans considerably. We divert M5 and M6 from

* D5 to D4. This will create a hole in the enemy defenses and will still allow

M7 and M8 to fly through and attack the enemy targets. Also, it seems that

M3, M2 and M4 still have enough fuel to use this hole to get at the enemy,

too. After performing an analysis of the new situation, including a check on

* the new optimal paths from the remaining missiles to the objectives, we decide

upon the following revised plan:

67

L

M D
5 4

.o

M3 T1
M' M2 -T T4

M4 T 3

7 T2

M8 T2

Notice how different this new plan is from the initial one. Next, we

input our chosen new plan into the computer and execute it. As the execution

proceeds, no new pop-up defenses are encountered, and everything goes as

planned. By time 34, the mission is finished, and the final configuration is

as follows:

Total score is 367
T2 T4 I TI 67 32 T2 61 138

Ti 02 13 2 T3 18 131 T4 32 67
D7 D3 D5 3 D1 .99 D2 .99

DI D4 D6 4 D3 .99 D4 .12
5 D5 .99 D6 .99
6 D7 .99
7
8

9
e 10

11
12
13

1 2 3 4 5 6 7 8 9 10 11 12 13

We have derived approximately 367 points in total, with T2 and T3

contributing the most, 138 and 131 respectively. Also, defense D4 has been

effectively attacked.

68

•

4.3 DISTRIBUTED INTERACTIVE TESTBED

4.3.1 Design of DDN Testbed

In the DDM game, the role of the player is to provide command and control

decisions in the form of commands like "send", "launch", 'Iove", etc.; the

role of the computer is to execute those decisions, and to provide

computational support for making them. The computer also provides all the

available information about the current battle, in the form of the board

position and the scoreboard.

In the case of several decision makers, each commander will have only

partial or even erroneous information about the battle. For example, he may

know only about what is happening on the territory within his "sensor" field

of view. He may also not know everything about the plans and actions of the

other decision makers, due to communication constraints. All these situations

can be modeled within the distributed game testbed.

This testbed consists of several modules, as seen in Figure 4-2. The

central one is the Battle Simulation Module, which has the correct and

complete information about the battle. This simulation module communicates

with each decision maker (player) through that player's interface module.

* This module is very much like a version of the centralized game, discussed

earlier. It acts as an interface for the player, helping him with making

decisions and executing these decisions on the Battle Simulation. There are

two major differences. First, the new interface does not allow the player to

see all the information, but only what he is allowed to know, for example a

partial view of the battle. Second, to compensate for loss of information,

there are communication capabilities added to the interface. This will allow

the players to communicate with each other, sharing information and plans.

The constraints on communication between the players are modeled through

the use of the Communication Module. This module enforces the communication

constraints by transmitting only certain types of messages or by restricting

the number of messages allowed, or by imposing "taxes" on communication, or in

some other way, depending on the model of communication chosen for each

experiment.

69

Cie
LLJ

0

U- -4

to

C=)J

700

In the next section we are going to discuss the experiments that we have

run or plan to run using the distributed game testbed.

4.3.2 Design of Experiments on Distributed Mission Planning

There are three main factors that contribute to the distributed nature of

mission planning:

1) Differences in information between actors. For example: each actor

has first-hand information only about a part of the whole battlefield,

including the enemy targets and defenses, and, especially, about the missiles

and airplanes belonging to other actors

2) Difference in goals and objectives. This addresses the issue

discussed in Section 7 that actors may have different objectives in their

missions, each one possibly concerned about getting the most glory, or

worrying about destroying only his own assigned targets, or saving his

airplanes and missiles. How do you reconcile the differences between such

actors? How do they reach a compromise?

3) Even if the actors all have the same goal and even if they have

perfect information about the current state of the battle, there may be

differences in intention. That is, Actor A could see where the airplanes of

Actor B are at the moment, but he still might not know where they are flying

to.

Preliminary experiments addressing the third issue have been run,

although more experimenting needs to be done later. In these experiments, the

* players knew the current positions of all targets and missiles, but didn't

tell each other their future intentions. The main issues encountered during

the game were:

- Least commitment: leaving one's options open as long as possible

until the other player's intentions became clear.

- Non-ambiguous actions: if one wanted the other player to understand

what his mission was, one tried to execute that mission from the start in such
F0 a way that would single that mission out to the other player.

71

L

- If the partner's plans were fairly clear, but seemed bad, one tried

various ways to indicate his displeasure, but doing that was almost impossible

without direct communication.

- If one partner had bad plans, and the other couldn't indicate his

disagreement, he just tried to do his best within the constraints.

- Sometimes one partner's actions seemed so puzzling that the other

ignored him altogether and just acted as if he was not there.

- Avoid strategies that reqtire really finely tuned timing.

Use of "division of labor". It was tacitly assumed by both players

that there would be "division of labor" in terms of:

*a) geography: player on the left voluntarily assumes responsibility for the

targets in the left field; player on the right-right field;

b) player whose forces are closer to the battle field assumes more

responsibility in knocking out first line defenses, as well as in

attacking "far to reach" targets;

c) player witi. nore missiles on board was also more inclined to sacrifice

some of his missiles to attack common defenses, etc.

There was another experimental distributed game run. In this game the

players tried to adjust their plans before execution. Each player would

decide what he wanted to do with his forces, write it down, and exchange the

plans with the other player. Then the players would adjust their plans so

that they would agree better with the other player's plans, and then exchange

new plans again. The process continued until both players were satisfied and

didn't want to exchange plans any more. The interesting issues were:

- Oscillation: Player 1 would change his plans to fit those of Player

2, Player 2 would change his plans to fit those of player 1, and they would

over-shoot: another disagreement.

- Writing distorted plans in order to indicate displeasure with the

other player's plans. For example, if one wanted the other player to attack

Target No. 6 on his side of the battlefield, one would assign one of his

72

missiles to do that temporarily, so that the other player would realize that

this needed to be done.'1_
- Necessity to use similar types of algorithms and heuristics for all

players other actors. In some of the games played the two players took

different approaches to the solutions and came up with mutually inconsistent

plans. Since each player was sure that his plan was the right one, there was

very little yielding on either side, and it took a long and agonizing process

for a compromise to be reached. This also points out a necessity for a good

planning aid that would help evaluate the validity of the other player's plan.

In the near future, we plan to address issues 1) and 2) mentioned at the

beginning of this section. To address issue 1), we are going to play a

distributed game with two or more players, with each player knowing everything

about his own resources and practically nothing about his partner's resources.

He may also have only very scant information about the enemy forces outside of

his area of main interest. The cost will be imposed on communication in the

form of a "tax" of n points subtracted from the total score for each message

transmitted. A great nunber of scenarios are going to be created. For each

scenario, we are going to play the game with various values n of the
"communication tax", from very high to very low. Then we shall compare the

performances of the cooperating players for different values of the tax.

Thus, it will be seen how the cost of communication influences the actions of

and the nature of cooperation between the players. To compare how rational

these psychological reactions to the cost of communication are, we should also

run a series of the following tests:

Again, there are going to be many different scenarios. For each scenario

we are going to impose several communication limits in the form of either "no

more than m messages per game" or in the form of restrictions cn the types of

messages allowed. There will be a wide spectrum of such limits, from very

low to very high. The game will be played separately for each value of the

limit. The results, i.e., the score Vo and the total number M of messages

transmitted, will be recorded. Then we shall pretend that there had been a

communication tax of n points per message. Thus, the real score would havi.

been Vn = Vo - n x M. Within each scenario, we compute Vn for various values

of n and various levels of communication. This will allow us to address

73
I

several important questions, one of which being: for each value n of

* communication cost, what is the optimal level of communication?

As to the issue of differences in objectives of players, one way to model

this would be to make each player responsible for a subset of the enemy

*" targets in the sense that his total score will be equal to the value derived

from only those targets. The players may have several (or more) targets in

c-mon, as seen below: Targets in Common

T4

Sphere of influence T5 TSphere of influence

of Player 1 T2 T 7 of Player 2
T3 Ta

Li L2

As far as the information is concerned, each player could be allowed only

partial information about the other player's resources, or he could be allowed

complete information. Similarly, the cost of communication could be

Isignificant, or virtually zero. These parameters will be important, but not

crucial. Even with perfect information and communication, the problem of

coordination between several players with partially conflicting objectives

will be apparent in all its glory, and we will investigate how the players

will negotiate in order to help each other (by attacking common defenses, by

negotiating their attacks on the common targets, etc). Investigating this

setup will help us not only understand the problem of conflicting goals, but

also the larger problem of assigning responsibility within a hierarchy. For

* example, consider the case of one commander with two subordinates:

0 2 3

The objective of the commander is to maximize the value of the attack

* uission. His main role will be delegating the responsibility, i.e., to divide

tasks of the attack mission between his two subordinates and to monitor

74

L

a

their execution. This can be done by making each of the subordinate's utility

function depend only on his subset of "targets of responsibility" like in

_C Figure 2, and by allowing the subordinates to coordinate their efforts.

A good commander is thus the one who is good at decomposing the problem,

at assigning the right utility functions to each subordinate, and at being

able to adjust these utility functions in cases when the subordinates are at

an impasse, or are not doing the right things all together.

To give a small example of some issues involved, let us consider the

following question: with respect to the common targets, should each player be

given the number of points equal to the total number of points extracted from

these targets by both players, or equal to his fair share of (his contribution

to) these points? The first approach may result in both players over-

emphasizing the importance of the common targets or in Player A's trying to

distract or prevent Player B from attacking these targets, since this will

automatically increase Player A's score.

These, and other issues, will be investigated when the distributed

interactive decision making system is fully implemented.

7

I

75

I

5. AUTOMATED DECISION MAKING TECHNIQUES

This section discusses several techniques for autmating the DDM process.

Most of the techniques to be discussed have foundations in mathematics, the

other two originated from artificial intelligence.

In order to completely automate decision making for the problem described

in Section 4, some simplifying assumptions were made. The one assumption that

applies throughout this section is that the launch platforms are stationary.

Further development may allow us to remove this assumption. Any other

assumptions required by specific automated decision making techniques will be

mentioned as necessary.

5.1 SEQUENTIAL ASSIGNMENT

5.1.1 Description

The sequential assignment algorithm chooses a set of missile assignments,

one at a time, in a greedy but myopic fashion. It is greedy in that during

each assignment cycle, it chooses that assignment yielding the highest

expected return; it is myopic in that it does not consider the effect that the

current decision could have on future assignments.

Initially, only targets are considered as possible objectives since

defenses have no explicit value. During the first assignment cycle, the

expected return associated with each possible assignment of a missile to a

target is calculated based on the probability of surviving the optimal path to

the target, the probability of then destroying the target, and the value

remaining to the target. The assignment of missile to target having the

* largest expected return is determined, with ties being broken arbitrarily.

The chosen assignment, say missile M1 to target Tl, is irrevocably made,

though not executed immediately. The value remaining to TI for later

calculations is reduced appropriately.

In all subsequent assignment cycles only those missiles without

assignments are considered. Potential assignments of missiles to targets are

evaluated as before. In addition, defenses are now treated as allowable

objectives. Determining the expected value derived from attacking a defense

is more difficult than for a target. Consider assigning missile M2 to defense

76

DI in the second assignment cycle, remembering that the assignment of MI to TI

has not actually been executed yet. We calculate the probability of existence

for Dl after a hypothetical attack by M2 and calculate the expected return for

the assignment M1 to Ti given that Dl has been probabilistically weakened.

The net improvement in the assignment of MI to Ti is the value given to the

assignment of M2 to Di. The assignment of missile to target or defense with

the largest expected return is the one chosen in the second assignment cycle.

In general, the value associated with attacking a defense is calculated

by determining the net improvement to all previously chosen assignments of

missiles to targets. Note that the assumed order in which missions are to be

iq executed is not the order in which they are chosen. The evaluation procedure

assumes that all missions against defenses are executed first, in the order in

which they are chosen, followed by attacks on targets in any order. During

any cycle, if the chosen assignment is to a target, only the value remaining

to that target need be updated; if the assignment is to a defense, the

probability of existence of that defense, all optimal paths affected by

attacking that defense, and the value remaining to any target with a

previously assigned missile that is affected by attacking that defense must be

updated.

After running through as many assignment cycles as there are missiles,

the algorithm terminates. Because the algorithm is myopic, there is no

guarantee that the solution that it arrives at will be optimal. In its

current implementation, it is best suited for use by a decision maker given

the local problem of assigning a number of missiles to objectives, then

varying the solution to coordinate with other decision makers. In principle,

the algorithm could also be implemented by allowing each missile to have a

microprocessor that determines the assignment for that missile. To calculate

the effect that assigning a missile to a defense would have on other missiles

that already had assignments to targets would require a large amount of

communications. A practical implementation of this form would most likely

require that we develop some means for approximating the effect of attacking a

defense that would reduce the communications needs.

77

* 5.1.2 Example

We now illustrate the sequential assignment algorithm with an example.

Figure 5-1 contains the same board configuration used to illustrate our

interactive planning system in Section 4. For this algorithm, the launchers

are assumed fixed and timing issues are not explicitly considered, although

timing could be determined after the set of missile assignments was chosen.

*Initially, only targets are considered as objectives, with target T2

being the target yielding the largest value, as seen in Figure 5-2. Missile

M5 is therefore assigned to T2.

Note that in the second assignment round, as shown in Figure 5-3,

defenses are now allowable objectives. Attacking D1 or D6 would not help M5

reach T2, but attacking any other defense would increase the expected

performance of M5 by the amount shown. Higher value can be derived from T3

though, so the second assignment sends M3 against T3.

The process continues until each missile has received an assignment. The

final solution sees two missiles attacking D4, one attacking D2, and the

remaining five missiles attacking targets for a total expected return of

* 441.6 (Figure 5-4).

5.2 SEQUENTIAL REASSIGNMENT

5.2.1 Description

This is a modification of the sequential assignment algorithm. It is

guaranteed to find a solution at least as good as that found by sequential

assignment; in many cases it will find a better solution at the cost of some

* additional computations.

In sequential assignment, only missiles that have yet to receive

assignments are considered in each assignment cycle. The assignment in each

cycle is chosen based on those assignments already made in previous cycles.

It may be the case that the objective chosen for a given missile might not

have been chosen had it been known at the time that some other assignment was

going to be made during a subsequent assignment cycle. For example, the

missile that was assigned to some objective in the first cycle based on the

initial situation may be able to derive greater value from a different

objective given knowledge that an assignment was made to some defensive site

78

L

- , ,...

:11°

T2 74 1 T1 100 0 T2 200 0
TI 02 T3 2 T3 150 0 T4 100 0

D3 D5 3 DI .99 D2 .9?
DI 34 D6 4 D3 .99 04 .99

5 D5 .99 D6 .99
6 L1 .99 I 12
7 L2 .99 Y M13 M4

LI 13 8 L3 .99 Y 5 H6
L4 9 L4 .99 Y fM7 M8

L2 10
11
12
13

1 2 3 4 5 6 7 8 9 10 11 12 13

Isitial fuel is 25

Figure 5-1 Board Configuration for Example

7.

i

!7

ej

target I scare 51.2 points. Current target value 100.0

target 2 score 51.9 points. Current target value 200.0
target 3 score 71.9 points. Current target value 200.0
target 3 score 76.8 points. Current target value 150.0target 4 score 51.2 points. Current target value 100.0

Missile S to target 2, value 81.9 points

Figure 5-2 First Assignment Cycle

target I score 51.2 points. Current target value 100.0
target 2 score 48.4 points. Current target value 118.1
target 3 score 76.8 points. Current target value 150.0
target 4 score 51.2 points. Current target value 100.0
defense I score .0 points
defense 2 score 33.6 points
defense 3 score 10.5 points
defense 4 score 24.5 points
defense 5 score 24.5 points
defense 6 score .0 points

emssile 3 to target 3, value 76.8 points

Figure 5-3 Second Assignment Cycle

Assignment Sumary
issile 5 to target 2 value 81.9 points.

missile 3 to target 3 value 76.8 points.

Missile 1 to target 1 value 51.2 points.

Missile 7 to target 4 value 51.2 points.

missile 2 to defense 4 value 62.9 points.

Missile 6 to target 2 value 49.8 points.

Missile 4 to defense 4 value 40.8 points.

Missile 8 to defense 2 value 27.1 points.
4 "

Total Score 441.6

Figure 5-4 Final Assignments

80

4

141 L2

during the fifth assignment cycle.

In sequential reassignment, maximum expected returns are calculated for

both previously assigned and previously unassigned missiles during each

A assignment cycle. Previously assigned missiles are considered first. If at

least one of these can achieve expected net improvement by changing its

assignment, then the missile with the greatest possible net improvement is

reassigned during that cycle, values are updated accordingly, ai l the next

assignment cycle begins. If no improvement is possible through reassignment,

then the best previously unassigned missile is chosen, as in sequential

assignment.

This algorithm must converge, though again not necessarily to the optimal

solution. However, it does allow some mistakes in missile to objective

assignments to be corrected, as illustrated in the example that follows.

5.2.2 Example

The advantages of sequential reassignment can be seen clearly in the

example contained in Figure 5-5. In this example, MI has enough fuel to reach

TI or T2, but M2 can only reach T2. The first assignment is MI to T2, since

T2 is the higher valued target. No choice remains but to assign M2 to T2

also, yielding only an additional 32 points. At this point, it becomes clear

that MI would be better utilized against Ti, because M2 can do an adequate job

against T2 without the help of MI. By reassigning Ml, an additional 108

points can be derived for a total of 300 points. Note that without

reassignment, the score would only be 192 points.

5.3 NEGOTIATION ALGORITHMS
p

5.3.1 Description

Negotiation algorithms encompass a variety of related algorithms. In

each, it is assumed that there are N decision makers. Each decision maker is

given control of some subset of the total resources; each decision maker also

has a subset of the objectives, targets and defenses, to which missiles can be

assigned. Assume that each decision maker has solved its own local subproblem

by some means, for instance by applying sequential assignment or reassignment.

Negotiations for resources between neighboring decision makers commence at

81

2 11 175 0 T2 200 0
3 LI .99 Y MI

L ? L2 .99 Y 12
L25

S2 3 4 5

Isitial fuel is 10

U

target I score 140.0 points. Current target value 175.0
target 2 score 160.0 points. Current target value 200.0

nissile I to target 2, value 160.0 points

target 1 score -20.0 points. Current target value 175.0
target 2 score 32.0 points. Current target value 40.0

Missile 2 to target 2, value 32.0 points

target I score 108.0 points. Current taret value 115.0

issile I to target 1, value 108.0 points

Assignment Summary
missile I to target 1 value 140.0 points.

Missile 2 to target 2 value 160.0 points.

9 Total Score 300.0

* Figure 5-5 Sequential Reassignment Example

82

this point.

Several means exist for implementing the negotiations, and the various

negotiation algorithms vary in this respect. Perhaps the simplest method is to

consider the decision makers one at a time. Decision maker 1 chooses a

missile to give up -- the choice can be arbitrary, or it could be the missile

contributing least to decision maker l's performance, or the last missile

assigned by the sequential assigment algorithm, etc. Decision maker 1

determines the degradation suffered if the chosen missile were to be given up.

The net loss can be thought of as a "selling price." The missile is then

offered to each of decision maker l's neighbors. Each neighbor calculates its

"buying price" by calculating the net gain induced by having the additional

missile to allocate in its local subproblem. Each neighbor transmits its

buying price to decision maker 1. If the maximum buying price exceeds the

selling price, then overall performance is improved by transferring control of

the missile from decision maker I to the highest bidder. If no neighbor offers

more than the selling price, then no change occurs. This process is repeated

once for each decision maker, then returns to decision maker 1 for another

cycle. If no missiles are transferred during a negotiation cycle, the

algorithm terminates.

More complicated means for choosing the missile to be relinquished exist.

For instance, decision maker I could offer all of its missiles "for sale."

Each neighbor could submit a list of bids, one for each missile. The missile

transfer yielding the largest net gain would then be effected.

Wt are uncertain as to which implementation of missile negotiation is the

best. Different versions can be evaluated with respect to the overall

performance of the final solution generated, the number of calculations

required, and the number of communications required. These issues may be

investigated at a later time.

An example of one implementation of missile negotiation follows.

5.3.2 Example

Consider again the board configuration used in the examples in Section 4

and in Section 5.1. Suppose that resources and objectives are distributed

83
I

.

among four decision makers as shown in Figure 5-6. For the example we use the

algorithm in which each decision maker uses sequential assignment to solve its

local subproblem and it is the last missile to receive an assigment that is

offered to other decision makers. We assume a complete network of decision

* makers, i.e., any two decision makers are neighbors.

Figure 5-7 contains the local solution found by each decision maker

before negotiations begin. Decision maker 1 begins the negotiation by

offering missile M2 at a price of 25. Offers of 47, 19 and 16 are received

from decision makers 2-4, respectively. Missile M2 is therefore given to

decision maker 2, where it is assigned to T2 while 144 now becomes assigned to

D2. (Missile 4 gets this new assignment because sequential assignment is run

again for decision maker 2 with the additional resource M2.) Each decision

maker repeats the same process, but no more missile transfers occur beyond

this point and the algorithm terminates as in Figure 5-8, with negotiation

yielding an improvement of 21.6 points.

The reason for transferring control of M2 to decision maker 2 is

* intuitively obvious. Decision maker 1 has responsibility for Tl, valued at

*100 points; decision maker 2 has T2 worth 200 points. However, each was

initially allocated two missiles. Therefore, decision maker 2 had a greater

need for resource than decision maker 1, and received additional resource

through negotiation. On a larger example, one would expect many missile

transfers to occur before termination of the algorithm.

5.4 MARGINAL UTILITY

Marginal utility algorithms are commonly used for resource allocation

* problems. Suppose that a number of decision makers are competing for the use

of global resources and that the overall objective function is separable.

Suppose further that for any given resource allocation, each decision maker

can determine its own marginal utility (resource price), i.e., the price it

would pay or would accept in exchange for an incremental unit of resource.

Assume that the utility function for each decision maker is concave.

This means that the lower the resource allocation (supply), the higher the

marginal utility (price). Then marginal utility theory states that a

necessary and sufficient condition for a set of resource allocations to be

84

L

12 T4 I111 100 0 12 200 0
Ti 2 T3 2 T3 150 0 14 100 0

i03 3 3 DI .99 D2 .99

DI D4 3 4 D3 .99 04 .99
5 D5 .9? D6 .?9
611 .99 Y M1 2
7 L2 .?9 Y 13 M4

LI L3 8 L3 .99 Y M5 H6

(L4 I L4 .99 Y 117 HO

11

OM)- 12
113

1 2 3 4 5 6 7 8 9 10 11 12 13

Iitial fuel is 25

Figure 5-6 Board Configuration for Example

0

6

S

na - n *- I |

Analysis for Decision Maker Nueber, I
missile 1 TO target 1 VALUE 51.2 points.
nissile 2 TO target I VALUE 25.0 points.

Total Score 76.2

Asalysis for Decision laker Number, 2
missile 3 TO target 2 VALUE 71.7 points.
missile 4 TO target 2 VALUE 46.0 points.

Total Score 117.7

Aoaly%., for Decision Maker Number, 3

missile 5 TO target 3 VALUE 76.8 points.
Missile 6 TO target 3 VALUE 37.5 points.

Total Score 114.3

7

Asalysis for Decision Maker Number, 4

missile 7 TO target 4 VALUE 51.2 points.
m Missile 8 TO target 4 VALUE 25.0 points.

Total Score 76.2

rotal score 384.4

Figure 5-7 Pre-negotiation Assignments

86

Analysis for Decision Maker Nuber, i
mssile I TO target 1 VALUE 51.2 point,

Total Score 51.2

Amalysis for Decision Maker Number, 2
missile 3 10 target 2 VALUE 71.7 points.
missile 2 TO target 2 VALUE 46.0 points.
missile 4 TO defense 2 VALUE 46.6 points.

Total Score 164.3

Analysis fop Decision Maker Number, 3
mzssile 5 TO target 3 VALUE 76.8 points.
missile 6 TO target 3 VALUE 37.5 points.

Total f ore 114.3

!I

Analysis for Decision Naker Nunber, 4
missile 7 To target 4 VALUE 51.2 points.
mzssile 8 TO target 4 VALUE 25.0 points.

Total Score 76.2

Total score 406.0

Figure 5-8 Post-negotiation Assignments

87

AD-A126 021 DISTRIBUTED"DECISION MAKING ENVIRONMENT(U) ADVANCED lV2.
INFORMATION AND DECISION SYSTEMS MOUNTAIN VIEWI CA
J M ABRAM ET AL. DEC 82 RADC-TR-82-3i@ F38682-81-C-02LO

UNCLASSIFIED F/fl 5/1i N

1.,-

~1

1111.05 LA -1 356 132l m

.. , MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

lN ' 3

E. It

L ___-

1. .-

- Ife

1111 •n[' , t

optimal is that each decision maker has the same marginal utility, this value

being referred to as the "equilibrium price." Marginal utility algorithms

perturb the resource allocations systematically until the equilibrium price is

achieved.

However, the missile assignment problem does not satisfy the conditions

required by conventional marginal utility algorithms. The objective function

is not separable: a decision maker's return may depend on the decisions made

by other decision makers. Also, the resource to be allocated (missiles) is

discrete rather than continuous. This means that marginal utility cannot be

defined incrementally as the derivative of the return function and that a

decision maker's buying price and selling price for resource may differ. A

version of marginal utility more suited to the missile assignment problem is

described in the appendix.

5.5 BRANCH-AND-BOUND SEARCH TECHNIQUE

This is a tree search technique whose origins lie in artificial

intelligence and in optimization theory. It eliminates from consideration

entire sub-trees by using a technique called branch-and bound. Here is a

brief description of the algorithm.

The algorithm construct. tree of possible assignment decisions. Each

node of the tree corresponds to some subset of assignments. An arc in the

* tree correspond to one new assignment. As the tree is constructed, we

calculate upper and lower bounds on the total expected performance originating

from any given node. If the upper bound on performance for any node i is

* lower than the lower bound for some other node j, then we can drop node i frum

the tree, thus pruning out all branches that would emanate from node i.

There are various ways of computing lower and upper bounds on

performance, since these bounds are not unique. In fact, the success of the

branch-and- bound method depends on the tightness of these bounds, i.e., on

how closely these bounds approximate the real value for optimal performance.

Methods of Artificial Intelligence may provide useful tools for finding tight

upper and lower bounds.

e

88

Aalysis for Docistom aker lumbeor,
missile I TS target 1 VALUE 51.2 points.

Total Score 51.2

Amalysis for Decision Raker Number, 2
missile 3 TO target 2 VALUE 71.7 points.
missile 2 TO target 2 VALUE 46.0 points.
missile 4 TO defense 2 VALUE 46.6 points.

Total Score 164.3

Alilysis for lecision laker Number, 3 W

nissile 5 TO target 3 VALUE 76.8 points.
missile 6 TO target 3 VALUE 37.5 points.

Total Score 114.3

Asalysis for DOCilOin Raker Number, 4

missile 7 TO target 4 VALUE 51.2 points.A missile 8 TO target 4 VALUE 25.0 points.

Total Score 76.2

Total score 406.0

Figure 5-8 Post-negotiation Assignments

87

| .. . - . i . ,- ', o - '. .'.- .'--. ,. . ,.. . -*.- .- ,# B

5.6 Al MISSION PLANNING SYSTEM

5.6.1 Expert Systems

The algorithms described above have a strong analytical flavor in the

sense that, even though they are not guaranteed to be optimal, their

. structures are fairly straightforward and their strengths lie in the complex

mathematical computations utilized by the. This approach contrasts with the

* 'artificial intelligence approach which relies more on higher-level conceptual

rules of inference and planning, similar to the way the human mind works,

rather than on intense mathematical computations.

The most promising AI approach involves building expert rule-based

* systems. These systems are created by having experts (in our case, military

decision makers) share the rules they use in their decision making. These

rules are then put together by computer scientists into a coherent rule-and

data-driven computer algorithm. As the name indicates, this algorithm has a

* very complex (unpredictable in advance) flow of control, depending on the data

" and the rules that were applied to that data. The result is a highly

flexible, "intelligent" decision system. Two words of caution are necessary.

First, unfortunately all heuristic rules have many exceptions. Thus, the

expert system is bound to make bad decisions some of the time, just as human

decision makers do. Second, although fallible, the human decision making

process is incredible complicated and still very much a mystery to science.

At the present it is impossible to incorporate all, or even most, of the human

intelligence involved in mission planning (or in any other intelligent

endeavor for that matter).
i"-

Therefore, success of a particular expert system depends on the degree to

* which the most important decision making concepts have been captured, together

with their interrelations. That requires a major research effort, good human

experts to share their experience, and a lot of attention to detail.

In the next subsection we are going to describe high-level blueprints for

a particular expert-based mission planning system. The system was created on

the basis of some of the experience we've derived from playing the DDM game.

* As we gain more planning experience and as more military experts share their

- experience with us, the expert system is bound to become much more detailed

89

and complicated, and even its high-level structure may undergo dramatic

changes. Thus, what follows should be considered as high-level example of an

expert system.

5.6.2 Design of an AI Expert System for DDM Mission Planning

This system consists of seven experts working as a team in solving the

posed mission planning problem. Here is a description of the roles played by

these experts.

1) Topological connectivity evaluator (or pocket dividor):

Topologically divides the enemy targets into pockets such that targets within

* each pocket are reachable from one another without going through major

defensive threats.

2) Pocket Specialists: Each pocket is dynamically assigned a pocket

specialist that comes up with the marginal missile utility curve, i.e.,

*" determines the return R(N) extractable from the pocket given N units of

resource (i.e., missiles) and assuming that these missiles units got safely

inside the pocket.

3) Ring-Cutting Experts: There is one ring-cutting specialist per

*pocket. This expert evaluates various paths of getting inside the pocket

(cutting through the ring), and chooses several (by N-best technique for

thresholding, or clustering) of the most promising paths.

4) Cooperative Planning Expert: This expert receives the sets of best

paths from each ring-cutting expert and combines them into cooperative ring-

6 cutting plans. It chooses several of the best of these plans on the basis of

their minimality and cooperation, i.e., needing to destroy as few defenses as

possible to accomplish the cutting, and also on the basis of the importance of

the pockets that will be accessible through these cuts.
"

5) Mission Planning Expert: Evaluates each of the cooperative ring-

cutting schemes passed on by Expert 4 and optimizes the missile assignments

(i.e., how many defenses to attack, which of the targets, etc.) within each

scheme using the marginal pocket utility curves passed on by pocket

evaluators, and tries to choose the most valuable overall assignment.

90a L

6) Constraint Expert: For the proposed assigments, checks if all the

constraints (like fuel constraint, time constraint, launcher constraint,

weapons constraint, etc.) are satisfied. If this best plan is satisfiable,

then we're done. If not, it notes which constraint is not satisfied, imposes

it on Expert 5 and tells Expert 5 to re-do his mission planning with the added

constraint. Expert 5 may also call the pocket and ring-cutting planners for

re-evaluation, if necessary. Thus, we'll have iteration to a solution.

7) Meta-level Planner: Coordinates the performance of the above

experts. Calls then in the right sequence and in parallel (like experts of

* Type 2 and 3). If Expert 6 comes up with new constraints, the Meta-planner

will call Expert 5 and the Pocket Experts and Ring-cutters for re-evaluation r

with the added constraints.

This present structure represents a transition between mathematical

algorithms and flexible AI systems. It already has a fairly flexible inter-

* expert control structure, but this structure will get much more flexible as

the system becomes more detailed. It also has a mixture of mathematical and

rule-based experts, with experts number 1 and 2 being fairly mathematical, and

experts 4 and 6 being strongly rule-based. We should also notice that this

expert system has a strong distributed flavor. As we saw, there are several.

pocket and ring- cutting experts working in parallel with each other, one of

"" each expert for every pocket. These experts come up with local attack plans,

and these plans are then merged and reconciled by the mission planning expert

and the constraint expert. This observation points out a way for a natural

implementation of this expert system in the distributed decision making form.

91-

91

I p•

4..

6. DESIGN ETHODOLOGY

- 6.1 INTRODUCTION

In this section we present a methodology for designing distributed r
decision making systems. Given a scenario where decision making is involved,

it is desired to find the appropriate decision making structure. This

includes the specification of the task structure, authority structure,

information structure and communication structure. A baseline design

methodology was suggested in the original proposal for this project. This

section summarizes the improvements we have made on the design methodology

- since then.

The structure of this section is as follows. In Section 6.2, we discuss

the general design problem and the design process. The key steps in the

design process are identified, together with aids which would be useful for

the various steps. Section 6.3 describes the design problem for distributed

decision making. This problem has unique features which impact upon the

design process. The specialized design process is then described in detail.

Section 6.4 contains an example to illustrate how design is accomplished.

6.2 GENERAL DESIGN PROBLEM

Design is a process of synthesizing new forms from existing ones in

response to a certain function or goal, while satisfying other constraints.

It is the dominant activity in engineering as well as other professional

di o Alines such as architecture, and distinguishes these disciplines from the

natural sciences. Our interest in design is primarily on distributed decision

making systems. However, a discussion of the general design problem will

enable us to understand better the specific design process needed for

distributed decision making.

6.2.1 Design Problem

4 A design problem involves the following main ingredients: an object

(system) to be designed, the enviroruent in which the object (system)

functions, and the requirements on the design. To be more precise, let S be

the system or object to be designed, and E be the enviroxment under

consideration. The starting point of the design problem is given by the *

92

4

triple (SE,F) where F is the set of requirements defined on S and Z. As an

'- example, S can be a radio, E be the relevant environment and F be the

performance requirements for S in the environment E. The output of the design

problem is a design, a, which when implemented, would fulfill the requirements

F. The design s would have associated specifications f defined on the

environment e. Stated another way, the design problem is: Given (S,-,F),

find a realization (s,ef) such that with aggregation, (S,1,F) is achieved.

(s,e,f) provides all the necessary specification for the construction of the

system. Usually, in a design problem, one fixes the level of the design by

constraining e. Depending on the level of description of e, we can have a

high or low level design.

Almost all design problems, whether they are engineering systems,

architectural designs, construction of computer progrns, or even composition

of music, can be represented in this form. Figure 6-1 represents the design

problem. Note that we have viewed design as a "satisficing" problem, rather t

than optimization, since in all but the simplest cases, optimization is

neither necessary or possible.

* I Design Process

*0 Final Design
(s,e,f)

Figure 6-1 Design Problem

93

0A

6.2.2 Desitn Process

The design process transforms the original system (S,EF) to a final

design (s,e,f), which satisfies the original requirements. Usually this is

- carried out in a number of levels, starting from the original problem

- description, going through increasingly more detailed designs until a final

design is obtained. The number of levels depends on the complexity of the

problem. When the original problem is quite complex and a detailed design is

needed, many intermediate levels may be needed as in Figure 6-2.

(S,E,F)

I(SI, El, Fj)J

(S21 E 29 F 2)

(s e,f)::

Figure 6-2 Multilevel Design

The output of each level serves as the input to the next level. Usually,

0 one has a pretty good idea about the number of levels needed and the kind of

description at each level. For example, in a lot of engineering systems, one

may go through the behavioral, functional and physical levels. In the

following we shall focus on the process of going from one level to the next.

We assume a design (Sj, El, Fi) is already given and that the next level

design (Si+1 , Ei+ 1 , Fi+ 1) which is consistent with (Si, Ej, Fj) has to be

found. Four steps are usually needed for this (see Figure 6-3). They are:

synthesis, optimization, evaluation and selection. These steps will now be

described in detail.

94

(S11E1,Fi) high level design

synthesis

I optimization

evaluation

I selection

(S1 1 E1 +11 ,F +1) low level design

Figure 6-3 Design Process at Each Level

95

6.2.2.1 Design Synthesis

In this step, possible candidate designs are generated starting from a

higher level design. The candidate designs should include one which would

eventually satisfy all the specifications. Furthermore, to reduce the tasks

of optimization, evaluation and selection, the set should be reasonably small.

* Synthesis is a creative process except in very trivial problems. It is also

the most important step since a good candidate can cut down the design time

tremendously. In synthesis, one almost needs the knowledge to look ahead to

generate a design which is likely to succeed. This requires a very good

understanding of the problem as well as experience in design. Analytical

tools are not particularly useful in this step. Aids, however, can be

provided to assist in the cognitive process of synthesis. The following are

some possibilities.

a. Representation of the problem.

One may view the design process as a transformation from one (usually Lu

more abstract) representation of the system into another (usually more

detailed). If the original representation is presented in a proper way, the

next-level representation can be cast into a mathematical framework, and then

* mathematical techniques can be used to reveal the next level representation.

This is, for example, the approach suggested in [1521, where a decomposition

technique is used to partition the requirements of a design into almost

* independent subsets which can then be satisfied individually. In any case,

careful analysis and clever representation can assist the designer

tremendously.

b. Design Rules

Although there is no hard scientific way of generating the next level

design, in many application areas, a large body of knowledge has been

accumulated through the solution of design problems. This knowledge is

* usually available as design rules of thumb in the respective areas. A design

can benefit from the use of these rules. In fact, an experienced designer is

an individual who has a large number of rules to help him in generating new

designs. Conceivably, an expert artificial intelligence system can be built

to imitate the performance of an expert designer.

96
S

S..

c. Focusing of Attention

As seen in Figure 6-3, design is seldom a one-shot process. After the

design alternatives have been evaluated and rejected to be unsatisfactory, a

new design alternative has to be generated. The reasons for rejecting the old

designs are extremely useful for generating the new design. The new design

can be synthesized by removing the unsatisfactory parts in the old design.

*" Instead of finding a design which can satisfy all the requirements, one looks

at a smaller problem of modifying a design to remove certain 'misfit"

variables. This is closely tied to the satisficing nature of the design

process.

6.2.2.2 Design Optimization

The result of the synthesis is a design alterne ,e (Si+l, Ei.l, Fi+l).

Frequently, some of the design parameters still rema .o be specified. This

can be chosen by optimizing a subset of the require. ; Fi with respect to p

the parameters. The optimization part can be formal - .uite easily. The

parameters belong to Si+l . The environment as specified by Ej+ I may be

completely deterministic or it may contain some uncertain parameters. The

objective function for the optimization may be one measure which the designer .

considers to be important for the performance of the system. Rigorous

mathematical techniques are available for optimization. For deterministic

problems, mathematical programming can be used. With uncertainty which is

probabilistic in nature, statistical decision theory is applicable. For

problems which are not very well structured mathematically, one may want to

use heuristic search methods. Overall, optimization is probably one of the

easiest processes to automate. Aids can be provided in both mathematical

* optimization methods and heuristic search.

6.2.2.3 Design Evaluation

After a design (S +12 Ei+l, Fi+1) has been optimized, one can evaluate

its performance in terms of the higher level requirements Fi. At the highest

level, these requirements may include functional correctness, cost,

performance, etc. At other levels, they will be quantities which are

appropriate for the degree of description required. The design is evaluated

with respect to the requirements Fi. If all the requirements are satisfied,

97

. ' .. . I - l

the design alternative is admissable. Otherwise, the designer would have to

generate a new design and repeat the process of synthesis, optimization and

evaluation all over again.

In evaluation, the design is completely specified subject only to the

uncertainty at level i+l. Many tools are available to facilitate evaluation.

The following are some typical ones.

a. Simulation

If the design is complicated, evaluation cannut be performed

analytically. Simulation is a powerful tool to be used in these situations.

Monte-Carlo simulations are frequently used when uncertainty is present in the

environment. Note that even though the same set of attributes is available

* during the optimization step, for practical reasons, only a smaller set is

usually considered. During evaluation, however, the complete set should be

used. For the same reasons, sometimes simpler models are used for

optimization while the complete models are used in evaluation.

b. Experimentation Facilities

In certain situations, it may be desirable to build a testbed to evaluate

a design. This is the case when human beings (as part of the environment) are

involved in using the system. Models can be used to replace the human beings,

but a test bed with human participation will be more rpilistic.

6.2.2.4 Design Selection

If more than one design alternatives are available after the evaluation

step, it is necessary to select a design to be implemented (when one has

already reached the lowest level) or to be further expanded into a lower level

design (when one is still at an intermediate level). A design which survives

the evaluation step satisfies all t!e design requirements, and is thus

acceptable. To select one design from many acceptable designs, one has to

look at the requirements themselves and how they have been satisfied by the

various designs. Consider the following example. Suppose two acceptable

designs are (s , el, f1) and (a2' e2, f2). Suppose the requirements F in the

original problem are represented by the vector F=(F , F). Let F1 (sj, ej, f)

represent the evaluation of design J with respect to the requirement F

98

and F (se 11 f1) > F ,f2) if design 1 is better than design 2 vith

respect to requirement i. Suppose

2 2
F (sl,elf 1) < F (s2,e2,f2)

We have to decide on one particular design. The selection or choice process

depends on which requirement we consider to be more important. If F is more
2

important than F , then design 1 should be chosen, and vice versa.

In general, the selection step involves the introduction of a higher

- level criterion than is represented by the requirements F. Some useful tools

to assist in the selection are:

a. Sensitivity Analysis

Here the higher level criterion is the sensitivity of the design to

certain variable unknown environmental parameters. In general, a design whose

performance is too sensitive to assumed parameter values is undesirable.

b. Trade-off Studies

One would like to see how the performance attributes change as one goes

from one design to the other. The standard cost-benefit analysis falls xnto

this category.

c. Multi-attribute Utility Theory [331

0
Here one constructs a global utility function starting from the more

elementary performance attributes. This utility function is then used as the

high level criterion to select the right design.

*d. Analytic Hierarchy Process [1531

In this case, a higher level criterion (goal) is specified. Instead of

constructing a multi-attribute utility function, one assigns weights to the

* overall contribution of the various attributes (requirements) to the higher

level goal or criterion. This is accomplished by first forming a hierarchy,

99

with the goal of the system at the highest level and the attributes F at the

lowest level. By conk .ering pairwise comparisons of two factors at each

level with respect to a goal at a higher level, one can arrive at their

relative weights. With these weights, comparison between designs is then

possible.

So far we have considered the activities at one level. In a multi-level

* design process, these four steps are repeated at each level. Frequently,

given a design (S, ,F), one may not be able to find a lower level design

(Si+ ,E +I ,Fi+ 1) which will meet the requirements. In this case, it is

necessary to find a different design at level i. By considering the

requirements in F1 which cannot be satisfied, one can find a design which has

a better chance of being satisfactorily realized.

In a multi-level situation, another high level criterion to be used for

selection of a design can be the promise of the current search path, i.e., how

likely that the selected design can lead to an acceptable final design. In

order to avoid a lot of backtracking, it may also be desirable to select more

than one design for future expansion at each level. Figure 6-4 illustrates a

depth first type multi-level design process.

6.3 DISTRIBUTED DECISION MAKING SYSTEM

In this section we apply the general design methodology described in

Section 6.2 to the design of distributed decision making systems. Our

presentation follows the structure of Section 6.2. First, the design problem

is described. This is then followed by a discussion of the design process.

6.3.1 Desi2n Problem

Two features distinguish this design problem from a general problem.

First, the system is used for decision making. Second, the system is

distributed in nature. This will be used in the problem definition.

The general scenario that we are interested in is shown in Figure 6-5.

Sensors generate measurements from the external world. Effectors are the

means by which the external world is affected. The decision makers may be in

-* place already, or they may be part of the design. The objective is to design

a distributed decision making system. Communication links will be provided to

100

0 .

.7

PROBLEM DESCRIPTION

(SAE,-F)

(Sl,El1 ,Fl)

Q (S2,E2,F2)

(S3,E3,F3)

(s ,e,f)

FINAL DESIGN

4 Figure 6-4 Example of a Depth First Search

101

EXTERNAL WORLD

0S

A A

SEO DECI IMAE

0A

SENECOR

Figure 6-5 Environment of Decision System

102

6

connect sensors, effectors and the decision makers in some fashion. Computers

will assist in the decision making. This is illustrated in Figure 6-6.

In the terminology of Section 6.2.1, S is the distributed decision making

system to be designed. E, the environment, includes the sensors, effectors,

as well as the decision makers if they are already in place. Obviously, it

also includes the external world in which the system operates. F, the

attributes and requirements, include the goals of the system as well as other V
constraints imposed by E on S.

In terms of a tactical air battle scenario, the external world consists

of the enemy targets and their defenses. The sensors are the radars and other

sensing devices, while the effectors are the planes or missiles (resources

which affect the external world). The goals of the system can be the

destruction of the enemy targets and the constraints may be related to fuel

consumption, geographical separation, etc.
p

The desired output of the design problem is the triple (s,e,f) which is

consistent with (S,E,F); s specifies all the components in the distributed

decision making system, e is the environment in which they operate and f gives

the requirements on the components and the environment. Specifically, this

description will include:

* Task architecture: What is each decision maker responsible for?

* Authority architecture: What resources does each decision maker

control and does a decision maker control

other decision makers?

I
9 Information structure: What does each decision maker know?

* Communication structure: How do the decision makers communicate with

each other?

In addition, we may also have specifications on the other components (such as

computers) in the system. Usually the design can stop here. However, if so

desired, we can also continue to design algorithms used by the decision makers

and/or computers.

103 p

EXTERNAL WORLD

0S

00

104

S DM

i I \ ..A

EFECO COMPUTE

.... "COMMUNICATION LINK

Figure 6-6 Distributed Decision Making Architecture•

104

Note that although the problem is one of designing a distributed decision

making system, our discussion here is limited to a centralized design

methodology. Certain parts of the design methodology can be distributed, but

this will not be elaborated here.

6.3.2 Design Process

Distributed decision making systems usually arise in complex scenarios.

Thus, one vould expect a multi-level approach to be needed for the design

process. The number of levels depends on the particular problem under

consideration. However, for many situations, a three level process will serve

very well as the starting point. The three levels are shown in Figure 6-7.

Original Problem (S,E,F)

Level 1 Design

I Logical Structure (S1 ,E1,F1)

Lvl2Desig

I Physical Structure (S2,E29F2)

Level_3 Design

• Detailed Design (s,e,f)

Figure 6-7 Three-level Design

105

At each level the design follows the process of section 6.2.2. The

following is a detailed description.

6.3.2.1 Level 1 Design: Original Problem to Logical Structure

At this level, we focus on the functional requirements of the design

- problem, i.e., Ei and F do not involve any physical variables. The physical

- constraints are ignored for the time being. The goal is to arrive at a design

which specifies the task architecture, the authority architecture, the -.

information structure and the communication structure at the logical level.

, This provides a design which is natural to the problem. It is, however, not

. necessarily compatible with the physical constraints. This will be taken care

of at the next level. Of the four steps of the design process at this level,

we shall concentrate our discussion on the first step.

a. Synthesis

As discussed before, synthesis is a creative step that requires good

knowledge of the problem. It was also pointed out that a good representation

of the problem will be extremely useful. The original problem under

consideration is a decision problem, which can be viewed as a mapping of the

measurement data from the external world into actions. This problem can be

* decomposed into smaller subproblems. One decomposition is separation of the

task into situat..on assessment, then planning and control. Situation

assessment can be further decomposed into hypothesis formation, evaluation and

selection. Planning can be decomposed into option generation, evaluation and

selection. If the data and actions can be partitioned, the partitioning can

-. induce further decompositions on the various functions.

4 As a result of this decomposition, we obtain a task structure which is a

useful representation for synthesizing logical designs. The task structure

contains not only the tasks that need to be performed to accomplish the goals,

but also their precedence relations, information requirements, response

requirements and possible conflicts. Task I is a precedent of task 2 if task

1 has to be completed before task 2 can be undertaken. This also implies that

information needs to flow from task 1 to task 2. The information requirements

of the task structure can be displayed conveniently by means of a graph where

* each node corresponds to an input and/or output for a task in the decision

106

*

- making process. A directed branch connects node xi to node yj if the input xi

.. is needed in generating the output yj. The task structure will thus have a

graph such as that of Figure 6-8. (xl,x 2 ,x 3) and (yl,y2,y3) are the original

inputs and outputs in the decision process; (wl,w2 ,w3) are additional input-

output pairs which have been introduced in the task decomposition.

The logical structure can be synthesized in the following way. Each

logical decision node is defined by its inputs and outputs. For example we

can have four logical nodes for the task structure in Figure 6-8.

Node a: Inputs xl,X 2 Outputs wsw2

Node b: Input x3 Output w3

Node c: Inputs w1,w 2 Outputs yl9y2

Node d: Input w3 Output Y3

The graph of the task structure induces a natural communication structure in

the logical structure. Since w2 depends on x3 and w3 depends on x1,

bidirectional branches are induced between nodes a and b, i.e., they should

communicate. Likewise, no communication is needed between nodes c and d since

Yi depends only on w i. The logical structure is shown in Figure 6-9.

The task structure is just one way of representing the original problem

to facilitate the synthesis of the logical structure. In general, synthesis

depends on what we choose to represent the problem. If human decision makers

are involved, a model similar to that described in Section 7 on organizational

decision making can be used. Th s leads to a different logical structure with

features such as authority structures which are always present in

organizations.

A large number of logical structures can be synthesized for a given

* problem. To guide the synthesis, design rules based on experience and

analysis should be used. Some of the candidate rules are:

107

xl wi Yl

x 2 2

x wW

Figure 6-8 Graphical Representation of Task Structure

node a node c

x w y

2w.' '

node b node d

Figure 6-9 Logical Structure r

108

w I"

. Sensors and effectors needed to accomplish a given task should be

- assigned to the same logical node

* Tasks which are completely independent should be assigned to separate

nodes

• Similar tasks should be assigned to the same node to reduce the mount of

processing

* Tasks which have the same information requirements say be grouped

together to minimize communication

* Important tasks should perhaps be assigned to more than one logical node

* to reduce vulnerability

0 If conflicting tasks are assigned to multiple nodes, a higher level node

may be needed for conflict resolution

* Low-level tasks, such as signal processing, should be assigned to the

same nodes as the sensors

* If fast response time is needed, the path from the data to the response

should be short, i.e., not too many nodes should be involved.

b. Optimization

Any free parameters can be optimized with respect to one criterion such

as response time, survivability, etc.

c. Evaluation

The logical structure should be evaluated with respect to the

requirements of the original problem. This may involve a simulation.

However, if the decision nodes have not been specified in great detail, simple

calculations may suffice.

d. Selection

If a number of logical structures are found to be acceptable, selection

of one logical structure can be done using any of the methods described in

* Section 6.2.2. In particular, one should consider the promise that a logical

109

- i*I I

structure will lead to a satisfactory final design when other constraints are

incorporated.

6.3.2.2 Level 2 Design: Logical Structure to Physical Structure

At this level, we look for designs which incorporate the physical

constraints of the problem. These include the actual description of the

sensors, effectors and decision makers. The resulting design (S2 ,E2, F2) will

specify the physical task architecture, authority architecture, information

structure and communication structure. This design should be one which

satisfies all the physical constraints and is natural to the problem under

consideration. The same four step procedure discussed before is used.

a. Synthesis

A physical structure can be obtained by assigning the functions of the

logical structure to the physical nodes. A natural way is to anchor the input

and output variables of the logical structure to the physical sensors and

effectors. After this, the logical decision nodes can then be assigned to

. physical decision nodes which are already present or to new physical decision

nodes. The logical structure then induces the natural physical structure,

i.e., task and authority architectures, information and communication

structures. If there are additional constraints on these, such as limited

communication between physical nodes, they should also be used in the

synthesis. Sometimes a logical structure may not lead to an acceptable

physical structure. For example, a communication path as specified by the

logical structure may not be allowable by the physical constraints. In this

case, it is necessary to regenerate a different logical structure. In

ogeneral, even though level 1 is primarily concerned with the functional
requirements of the problem, it is a good idea to look ahead and consider the

kind of physical constraints one may have to consider in the future.

* Design rules again would be useful in generating candidate designs. For

survivability, a logical node which performs critical functions should be

mapped into more than one physical node. If communication constraints are

severe, logical nodes which communicate a lot should be placed in the same

• physical node.

110

b. Optimization

Various optimization problems can be formulated to fix the parameters in

the design. For example, one can vary the locations of the physical decision

nodes to minimize the communication requirements.

c. Evaluation

Simulation is usually the tool to check whether the design requirements,

both physical and functional, can be satisfied.

d. Selection
p

At this time, the attributes of the design alternatives are usually

known. Selection can be performed in many ways as discussed before.

6.3.2.3 Level 3 Design: Physical Structure to Detailed Design

With the selection of the physical structure, the basic design of the

distributed decision making system is specified. If desired, one can go on to

design the components which comprise the design. These would include the

design of each decision node as well as the communication network.

a. Design of Decision Node

Each physical decision node is specified by its decision task, as well as

the constraints on information and communication. The node may contain a

human decision maker or its function may be automated by means of a computer.

If a human decision maker is present, he may be assisted by means of a

decision support system. Once the requirements of this system are specified, P

it can be designed using the methodology of Section 6.2. If a computer is

used for automatic decision making, the hardware and software specifications

can be obtained in the same way.

I

b. Design of Communication Network

The design of the actual communication network follows the physical

intermodal communication requirements. If these requirements are known (from

the physical structure) the network can be designed in the usual way [154].

sho

The design of the distributed decision making system is now complete.

Before the actual implementation of such a system, it may be necessary to do a

full-scale simulation.

6.4 DESIGN EXAMPLE

In this section we consider a simple example to illustrate the design

process. The system to be designed is for cruise missile offense against

enemy land targets. The cruise missiles are to be launched from air

platforms. Data about the enemy targets are collected by satellite based

sensors. For survivability, a distributed decision making system is desired.

6.4.1 Design Problem

The design problem is specified by (S,E,F). S is the distributed

decision making system transforming sensor data into command signals for the

cruise missiles. E, the environment, consists of the enemy targets and

defenses, the satellite sensors, the cruise missiles and the launch platforms.

F gives the goals and performance specification, including survivability,

performance in destroying enemy targets and cost. The desired final design

(s,e,f) consists of s, the components of the distributed decision making

system, e, the environment in which they are defined and f, the requirements

on the components.

6.4.2 Design Process

We now use the steps described in Section 6.3 to go from the initial

problem to the final design.

6.4.2.1 Level I Design: Logical Structure

The first step at this level is to generate some candidate designs. As

discussed before, a proper representation of the decision problem is very

useful. The decision problem can be viewed as the transformation of sensor0
data into command signals for the cruise missiles. A functional decomposition

leads to the tasks shown in Figure 6-10. The decomposition can also be

represented graphically as in Figure 6-11. To generate distributed logical

structures, the inputs and outputs are partitioned by sensors, missiles and

targets, e.g.,

112

S

SENSOR DATA

SITUATION ASSESSMENT

MISSION PLANNING

PATH OPTIMIZATION

E GUIDANCE AND CONTROL

CONTROLS FOR MISSILES

Figure 6-10 Functional Decomposition

V w x y z

V: SENSOR DATA

* W: STATUS OF MISSILES, TARGETS

X: ASSIGNMENT OF MISSILES TO TARGETS

Y: OPTIMAL PATHS FOR MISSILES

* Z: CONTROLS FOR MISSILES

Figure 6-11 Graphical Representation

113
0,

v (v . *vNS)

W (w ' M+NT)

x (x* ... xNM)

y =(y YN)

z = (z 1... . . z.)

Where NS = number of sensors

NM = number of missiles

NT =number of targets

Since the functions of path optimization and guidance and control are

independent for different missiles, the task struct-ve will have the form

* shown in Figure 6-12. This basically reflects that &Aven a particular

assignmient of a missile MH (x),the optimal path (yj) and the controls for

missile M~ (Z) can be found independently of the other missiles.

v w x y z

SITUATION PLANNING PATH GUIDANCE7
ASSESSMENT OPTIMIZATION & CONTROL

Figure 6-12 Task Structure

114

The task structure represents the ultimate distributed logical design

where each output node corresponds to a decision node. It is obvious that

path optimization and guidance and control can be performed in a distributed

manner. Thus from now on we focus on the design of logical structures for

situation assessment and planning. By grouping together inputs and outputs,

we arrive at two designs shown in Figure 6-13. Note that we have eliminated

the totally centralized version as being undesirable.

Each logical decision node in the figure is responsible for the

assignment of a missile Mi. In Figure 6-13(a), the same status assessment is

available to all the decision nodes. In Figure 6-13(b), only partial

information w = status of {all targets, missile Mi} is available for node i.

In this case, communication is induced between all the decision nodes from the

original task structure.

The requirements F1 may correspond to the reliability of the logical

decision nodes. In Figure 6-13(a) the node generating w has to be quite

reliable because all the other nodes depend on its information. The
~i
reliability requirements on the nodes w in Figure 6-13(b) are not that high.

These requirements can be optimized given the overall requirements of the

system as specified by F. Computational requirements are also obvious.

Figure 6-13(a) implies the same computation duplicated at all the logical

decision nodes. In Figure 6-13(b), the computation is distributed.

With the proper specifications, evaluation of the two designs show that

they are both acceptable. We can either pick one to be designed at the next

level or retain both at the same time. Our decision is to consider both of

these alternatives.
0

6.4.2.2 Level 2 Design: Physical Structure

The sensor data come from the satellite sensors. Guidance and control

should reside with each cruise missile. These are the easy assignments. Path

optimization may reside in the cruise missile or another physical decision

node. We shall concentrate on the assignment of w and x.

Assume that the cruise missiles are launched from two launch platforms.

We also require that situation assessment and planning be assigned to the same

115

Iv--7

ax
xl

x2

XNM- 1

XNM

(a) Design I - Distributed with Centralized Information

w x1

2

wNM XNM

(b) Design II - Distributed with Decentralized Information

Figure 6-13 Logical Structures

116

0

decision node since these are closely coupled functions. Then each of the two

logical designs in Figure 6-13 gives rise to two physical designs as shown in

Figure 6-14. In design IA, the decision node in charge of generating v and xi

is a cruise missile. In design IB, there are two decision nodes, each

generating w and the plans for a group of cruise missiles. In both of these

designs, the physical decision nodes share the sane data and carry out

essentially the same computations. No commitnication between the decision

nodes is needed.

Designs IIA and IIB are derived from logical design II. In IIA, each

cruise missile is a physical decision node. In IIB, the launch platforms are

the decision nodes. In both of these designs, the physical nodes have

decentralized information and communicate with each other to arrive at a plan

for assigning the missiles.

Still two more designs can be obtained by taking IIA and lIB and removing
the communication. As expected, the performance of the overall system will

suffer.

These designs are then evaluated with respect to communication and

computation requirements as well as performance. One possible performance

measure is the expected military value of the destroyed targets.

NT
J = ViP(T)

where NT is the number of targets

Vi is the military value of the ith target

P(T i) is the probability the ith target Ti is destroyed

For a set of 8 targets and 8 missiles with given physical parameters, the

physical structures are compared in Table 6-1.

If we require J to be high, then designs IIIA and IIIB will be

eliminated. IIB is also poor with respect to reliability. Thus the designs

IA, IB and IIA are acceptable designs. If response time is critical, IIA is

undesirable since it requires iterations between decision nodes. Also,

117

A

IA X1 M1 x

W X MNwNML

w x ~m NM wN

lIIA II M1

mN xN NM wN P

Fiue61xhsclSrcue
4IAwIIBO

118

Table 6-1 Comparison of Different Physical Architectures

COMPUTATION COMMUNICATION J
DATA BASE AT DECISION BETWEEN J FAILURE OF

NODE DECISION NODES NO FAILURE L1 OR L2

Ia Common Duplicated None 69 69
among missiles

Ib Common Duplicated None 69 69
among launch
platforms

Ha Decentralized Decentralized Yes 69 69
but iterative

* lib Decentralized Decentralized Yes 69 30 or 28

but iterative

Ilia Decentralized Decentralized None 50 50

IlIb Decentralized Decentralized None 58 30 or 28

-* J = Expected military value

119

frequent cinunication allows easy detection by the enemy. Thus IA and IB are

acceptable designs.

If we compare IA and IB, both require the same computation at each node.

On the basis of cost, IB is more desirable. However, IA is probably more

reliable. A higher level criterion would be needed for the final selection.

6.4.2.3 Level 3 Design: Detailed Design
h

Both hardware specifications (computers, communication links) and

software algorithms (for situation assessment, planning, path optimization,

guidance and control, etc.) can now be investigated. At this stage, a

detailed simulation is possible.

b

4g

120

-I P

7. THE ROLE OF THE HUMAN DECISION HAER

7.1 INTRODUCTION

Military decision making is an example of organizational decision making

-. where the overall activities of the organization are a result of decisions and

actions made by different organizational members. For this class of

distributed decision making problems, where there are humans involved in

assessment, generation of options, evaluation and choice; we need to examine

the problem more closely in order to identify the important issues involved.

Before doing so, we need to fix some definitional concepts to facilitate

discussion.

A decision is considered as an irrevocable allocation of resources, and a

decision maker is an individual who has the authority to commit the resources

of an organization. In a distributed decision making environment, the

authority over resource commitment is distributed in the sense that each

decision maker has the authority to commit a portion of the total resources of

an organization. Let R be the set of total resources of an organization, and

let N-{l,...,n} be the set of decision makers. The ith decision maker has the

* authority to commit resources RC R. It is reasonable to assume that

n
U R = R~i=l

*and in some cases, we may also have

R1 fR = 0 V i j

In the case where Rif R 1 0, then there are certain resources which can

be allocaced by either decision maker i or decision maker j and thus

bargaining between these two decision makers may be necessary to determine the

• allocation of such resource. In this chapter, we shall discuss the issues

involved, which then lead to identification of important problems in a

121

4

distributed decision making enviroment in the context of organizational

decision making.

7.2. DECISION MAKING PROCESS

Before discussing the issues involved in a human distributed decision

* making enviroment, we shall first describe the decision making process of any

particular decision maker i within the organization. (See Figure 7-1) The

inputs to the decision making process are:

1. Set of guidelines or goal, and

2. Assessment of local situation.
!S

The first phase is the issues identification process. In this process,

the decision maker assesses what his/her local situation is relative to the

overall situation and decides whether new reallocation is needed to fulfill

his own objective subject to the set of guidelines or goal stipulated (usually

by someone higher up in the authority structure); and if new reallocation is

needed, what issues need to be considered. As indicated in Figure 7-1,

assessment of the overall situation requires information which resides with

other decision makers.

The issues identified in this phase are inputted into the options

generation phase where options are created concerning how the resources

available to him/her should be reallocated. In the case where R nR 00, this

phase is interrelated among different decision makers who are in control of

the same resources.

Each option generated is evaluated carefully by each decision maker

independently. In the evaluation, the individual's risk profile and critics'

comments are incorporated. Basically, decision maker i wants to assess to

what degree is his/her goal being fulfilled within the stipulated guidelines,

given that a certain option is chosen. The evaluation process may trigger new

options to be generated, either by identifying the weaknesses of the present

options generated or identifying new issues to be considered.

If an option is generated in which all decision makers agree upon the use

of the common resource, then the outcome is a specific distributed decision.

This is achieved by a bargaining process among decision makers who are in

122
I

SET OF LOCAL
GUIDELINES ASSESSMENT
OR "SYSTEM"
GOAL .

INDIVIDUAL - II -
GO DAL QUERY OTHER DMS

ISSUE IDENTIFICATION TO ASSESS WHETHER
INDIVIDUAL GOAL IS
ACHIEVED VIA STATUS QUOISSUES TO

FOCUS ON

RESOURCE NEGOTIATION WITH OTHER DMS;
• UNDER CONTROL OPTIONS GENERATION PROPOSAL ON USE OF COMMON

RESOURCE

INDIVIDUAL
GOAL I QUERY OTHER DMS TO
RISK ASSESS IMPACT OF OPTION
PROFILE EVALUATION ON EVERYBODY; THIS IS
CRITICS - - NEEDED FOR BARGAINING ON

- THE USE OF COMMON RESOURCE

CHOICE PROCESS

DECISION

IMPLEMENTATION

' PLAN
* PROVIDE PROPER GUIDELINE

(INCENTIVE) TO ACHIEVE PLAN

0 GUIDELINES TO ACTORS IN THE LOWER HIERARCHICAL LEVEL

Figure 7-1 Distributed Decision Making Process

123

U l

control of the same resources. To implement the decision, a distributed plan

can be developed which provides guidelines for decision makers (or actors) in

the lower level of hierarchy. In order that the lover level actions will

adhere to the desired plan, a proper guideline (or incentive) may be provided.

7.3 PROBLEM ISSUES

We can now identify certain problem issues in a distributed human

decision making environment. We can categorize them into the following

classes of subproblems.

7.3.1 Distributed Assessment and Evaluation

The problem here is to assess whether one's goal is fulfilled within the

specified guideline when a certain option (or status quo) is implemented.

There are four stages involved.

(i) "What is" -- This is a distributed hypothesis formation problem. The

problem can be abstracted as follows. Each D14 has his/her local

information which allows him/her to construct independently his/her

"local picture." This is a combination of model building and hypothesis

testing. However, in order to see whether the global situation will

influence his/her goal achievement, each DM will have to get information

from other DMs. Since communication capacity is usually limited, each DM

has to determine what information is needed from which DM and what query

is to be sent to each DM. In response, each DM has to decide what

information (type and aggregation level) is to be sent to other DMs. In

general, query response is carried out in a sequential manner. Note that

each DM is not interested in the overall situation, but only to the

extent that relates to his/her individual goal achievement.

(ii) "What if" -- the 'what is" gives a structural model of the

0 situation, with certain parameters and variables which are either

uncertain or nonstationary over time. In order to evaluate what would be

the likely outcome conditioned on a chosen option, one needs to use the

structural model to answer a set of "vhat if" questions. Plausible

scenarios are to be constructed which are represented by setting certain

values for the parameters and variables within the model, then using the

124

S , a I , *

0!

model, determine the plausible outcomes. Assessment of the likelihood of

each plausible scenario will yield assessment on the likelihood of

plausible outcomes.

(iii) Goal Representation -- The problem here is to model the individual

goal in a quantitative way. A standard procedure is to determine a set

of attributes, where the numerical values of the attributes represent how

one perceives the relative "distance" between one's position and one's

goal. Some of these attributes are physical in nature and their values

can be measured absolutely (e.g., number of enemy targets destroyed),

others are more abstract and only relative comparison is meaningful

(e.g., the military value of destroying a specific enemy target). Note

that a goal can have many different representations. An individual's

risk profile must be incorporated in each representation. The process of

utility encoding in any decision analysis practice is one way to

determine one specific goal representation. The multi-goal

representation has important implications and shall be discussed further

in the choice process.

(iv) Performance Evaluation -- This is a straightforward problem once the

model structure (what is) is determined, plausible outcomes (what if) are

determined and different goal representations are specified. All that is

required is to map the plausible outcomes to the set of attributes in

each representation, and weigh them appropriately with the likelihood of

the plausible outcome.

7.3.2 Issue Identification

This is accomplished by identifying both the 'Veak" and "strong" points

which lead to goal accomplishnent. The problem can be posed as follows: Given

a certain individual goal reiresentation in terms of a set of attributes, and

a certain assessment of one's strategic position (these are obtained via

distributed assessment and evaluation as discussed above), on which subset of

the attributes should one focus one'a attention in generating alternatives?

The process requires more creativity than analytical skill (even though some

6 high level analysis is required).

125

6

7.3.3 Option Generation

The issue identification process identifies the issues to be focused in

generating alternatives. The next process is to generate alternatives based

on these issues. Again this is mostly a creative process even though domain

-' knowledge and analytical skill can be very helpful. In some cases, we can

formulate such a process via a set of mathematical optimization problems

[155]. In other cases, an option prompting enviromnent is needed to induce

the creative process [156J. In a distributed decision making enviromnent, an

option initiated by an individual decision maker must also include a proposal

* on how the common resources are to be allocated [157].

7.3.4 Choice Process

This requires explicitly bargaining among individual decision makers, at

the same hierarchical level, on the use of common resources. Since each of

then has a different goal and a different assessment (both local and global),

the problem is a cooperative game with incomplete information. Some

modifications of the classical formulation of such a game problem is required

*since goal representation is not uniquely defined.

7.3.5 Implementation, Organizational Structure and Incentive Setting

This is the phase where a decision is translated into actions to be

taken. In an organization with hierarchical structure, a decision at a

certain level needs to be translated into actions taken by decision makers at

a lower level. The problem of implementation is the setting of guidelines for

* lower level actors such that their combined actions align with the decision

made. Since each actor has his/her own individual goal, the problems of

organizational structuring (number of actors, delegation of authority,

communication channels, etc.) and incentive setting (influence goal

* representations) are extremely important. Note that for a lower level, we

have another distributed decision making process as given in Figure 7-1. This

phase requires much more psychological understanding of individual and group

response than analytical skill, though simple modeling and analysis are

* helpful in certain situations where logical deduction is required.

126

S

8. CONCLUSIONS AND FUTURE EFFORT

We have surveyed literature relevant to distributed decision making.

Through this survey, we learned some techniques that could be helpful for our

DDM effort. We also learned that DDM is a large, complex problem for which

there is no unified theory. We hope that this project will contribute to

overall understanding of the problem.

A major thrust of the project has been the development of our interactive

decision making environent. Our strategy has been to concentrate first on

designing and implementing the software needed to support a single decision

maker. After several rounds of improvement, we feel that this software has

almost all of the capabilities that it should. After implementing a few more

enhancements, the software should be to the point where we can begin to

implement a distributed version of it, after which we will begin

experimentation. We feel that much has been learned already frnm developing

and using the existing software and that much more will be learned in our

future efforts.

A related effort has been the development of automated decision making

techniques. Some of these are still in the development stage while other-

have been partially or fully implemented. In general, the more mathematica

approaches seem best suited for simplified problems or for lower level

subproblems in a hierarchically decomposed, complex problem. In order to

automate decision making for large, real-world problems, heuristics seem

necessary. The most promising approach seems to be to use algorithms for the

computationally intense aspects of a problem in conjunction with human or

artificial intelligence to make more abstract decisions. Future efforts

4include further algorithm development, incorporating these algorithms into our

interactive simulation, and investigating the feasibility of developing an AI

planning system.

We have developed a methodology for designing distributed decision making

systems. By a careful examination of the general design process and

specializing it to our problem, we have identified the basic steps needed in

the design process. We believe that although the design methodology cannot be

automated at this point, a systematic approach is indeed available. The

success or failure of the design depends very much on the experience and

127

knowledge of the designer. Tools, however, can be developed to assist him in

the various tasks. The process is thus an interactive one with the human

being playing the dominant role and assisted by a computer aided design

support system.

We have also gained some preliminary insight into the effects of

introducing humans into the decision making process. This issue will be

investigated more fully when our distributed interactive planning environment

has been implemented, as will the issues of distributed data bases and

architectures.

1

I

128

4 p

References

r
[11 J. von Neumann and 0. Morgenstern, Theory of Games and Economic

Behavior. Princeton, NJ: Princeton University Press, 1944.

(2] R. A. Fisher, "The fiducial argument in statistical inference,"
Arnalsof Eugenics, vol. 6, pp. 391-398, 1935.

[3] A. Wald, Sequential Analysis. New York, NY: Wiley, 1947

[4] L. J. Savage, The Foundations of Statistics. New York, NY: Wiley, 1954

[5] W. Edwards, "The theory of decision making," Psychological Bulletin,
vol. 51, pp. 380-417, 1954.

[6] C. H. Coombs and S. S. Kornorita, "Measuring utility of money through
decision," American Journal of Psychology, vol. 71, pp. 383-389, 1958.

[7] W. K. Estes, "Of models and men," The American Psychologist, vol. 12,
no. 10, pp. 609-617, 1957.

[81 S. Siegel, "Decision making and learning under varying conditions of
reinforcement," Annals of the New York Academy of Science, vol. 89,
pp. 766-783, 1961.

[9] P. Slovic, B. Fischhoff and S. Lichtenstein, "Behavioral decision
theory," Annual Review of Psychology, vol. 28, pp. 1-39, 1977

S
110] II. .1. Linhorn and R. M. Ilogarth, "Behavioral decision theory: processes

of judgment and choice," Annual Review of Psychology, vol. 32, pp.
53-88, 1981

[11] T. S. Wallstan (ed.). Cognitive Processes in Choice and Behavior.
Hillsdale, NJ: Lawrence Erlbaum Associates, 1980.

[12] P. Varaiya, "Trends in the theory of decision making in large systems,"
Annals of Economics and Social Measurement, vol. 1, no. 4, 1972.

[13] N. R. Sandell, Jr., P. Varaiya, M. Athans, and M. G. Safonov, "Survey
of decentralized control methods for large scale systems," IEEE
Trans. Automat. Contr., vol. AC-23, no. 2, pp. 108-128, Apr. 1978.

[14] R. E. Larson, Tutorial: Distributed Control, IEEE Computer Society, 1979.

[15] C. B. McGuire and R. Radner (eds.). Decision and Organization.
Amsterdam: North Holland, 1972

[161 A. M. Ceoffrion, "Elements of large-scale mathematical programming:
Part I: concepts; part II, synthesis of algorithms and bibliography,"
Management Science, vol. 16, no. 11, pp. 652-67r, pp.626-691, July,
1970.

I
[171 1.. S. asdon, Optimization Theory for Large Systems. New York:

MjcMil i n, 1970.

129

... I II]

[18] D. A. Wismer Optimization Methods for Large-Scale Systems, New York,
NY: McGraw-Hill, 1971.

. [191 B. Chandrasekaran (ed.). "Special Issue on Distributed Problem-
Solving," IEEE Trans. Syst., Man, Cybern., vol. SMC-lI, no. 1, pp. 1-99,
Jan. 1981.

[20] R. D. Luce and H. Raiffa, Games and Decisions: Introduction and Critical
Survey. New york, NY: Wiley, 1957.

[21] H. Raiffa and R. Schlaifer, Applied Statistical Decision Theory, Boston,
MA: Graduate School of Business, Harvard University, 1961.

[22] J. 14. Pratt, H. Raiffa, and R. Schlaifer, "The foundations of decision

under uncertainty: an elementary exposition," J. Am. Statis. Assoc., 7

vol. 59, pp. 353-375, June, 1964

[23] J. W. Pratt, H. Raiffa, and R. Schlaifer, Introduction to Statistical
Decision Theory. New york, NY: McGraw-Hill, 1965.

[241 H. Raiffa, Decision Analysis: Introductory Lectures or Choices under
Uncertainty, Reading, MA: Addison-Wesley, 1970.

[25] D. W. North, "A tutorial introduction to decision theory." IEEE

Trans. Systems and Cybernetics, vol. SSC-4, no. 3, pp. 200-210, Sept.
1968.

[26] P. C. Fishburn, "Utility theory," Management Sci., vol. 14, pp. 335-378,
Jan. 1968.

[27] R. A. Howard, "Decision Analysis: applied decision theory," Proc.
4th Int. Conf. Operational Res., Boston, MA, 1966.

[28] R. A. Howard, "The foundations of decision analysis," IEEE Trans.
Systems and Cybernetics, vol. SSC-4, no. 3, pp. 1-9, Sept. 1968.

[29] R. A. Howard, J. E. Matheson and K. E. Miller (eds.). Readings in
Decision Analysis. Menlo Park, CA: SRI International, 1977.0

[30] S. Barclay, et al., "Handbook for decision analysis," Technical
Report TR-77-6-30, Decisions and Design, Inc., 1977.

[31] R. A. Howard, J. E. -Matheson and D. W. North, "The decision to seed
hurricanes," Science, vol. 176, pp. 1191-1202, 1972.

[32] Stanford Research Institute, "Decision analysis of nuclear plants in
electrical system expansion," SRI Project 6496 Final Report, 1968.

[33] R. L. Keeney and 11. Raiffa, Decisions with Multiple Objectives:
Preferences and Value Tradeoffs, New York, NY: Wiley, 1976.

[34] J. Marschak, "Elements of a theory of teams," Management Sci.,
vol. 1, pp. 127-137, 1955.

130

[35] T. Groves, "Incentives in teams," Econometrica, vol. 41, pp. 617-631,
July 1973.

[361 K. J. Arrow and R. Radner, "Allocation of resources in large teams,"
Econometrica, vol. 47, no. 2, pp. 361-385, Mar. 1979.

[37] T. Groves and M. Loeb, "Incentives in a divisionalized firm,"
Management Sci., vol. 25, no. 3, pp. 221-230, 1979.

[38] R. Radner, "Team decision problems," Ann. Math. Stat., vol. 33, pp.
857-881, 1962.

[39] J. Marschak and R. Radner, The Economic Theory of Teams, Cowles
Foundation Mono. 22. New Haven, Conn.: Yale University Press, 1972.

[40] M. Beckman, "Decision and team problems in airline reservations,"
Econometrica, vol. 26, pp. 134-145, 1958.

[41] Y. C. Ho and K. C. Chu, "Information structure in dynamic multi-person
control problems," Automatica, vol. 10, pp. 341-351, 1974.

[42] Y. C. Ho, "Team decision theory and information structures," Proc.
IEEE, vol. 68, no. 6, pp. 644-654, July, 1980.

[43] H. S. Witsenhausen, "On information structures, feedback and causality,"
SIAM. J. Control, vol. 9, no. 2, pp. 149-160, May, 1971.

[44] J. M. Bismut, "An example of interaction between information and
control: the transparency of a game," IEEE Trans. Automat. Contr.,
vol. AC-18, no. 5, pp. 518-522, Oct. 1978.

[45] N. R. Sandell, Jr. and M. Athans, "Solutions of some nonclassical LQG
stochastic decision problems," IEEE Trans. Automat. Contr., vol. AC-19,
no. 2, pp. 108-116, Apr. 1974.

[46] Y. C. Ho, M. P. Kastner and E. Wong, "Teams, signaling, and information
theory," IEEE Trans. Automat. Contr. vol. AC-23, no. 2, pp. 305-312,
Apr. 1978.

[47] G. B. Dantzig and P. Wolfe, "The decomposition algorithm for linear
program," Econometrica, vol. 29, pp. 767-778, 1961.

[48) K. J. Arrow and L. Hurwicz, "Decentralization and computation in resource
allocation," in Essays in Economics and Econometrics, R. W. Pfouts, Ed.
Chapel Hill, NC: Univ. of North Carolina Press, 1960, pp. 34-104.

[49] L. S. Lasdon and J. D. Schoeffer, "A multilevel technique for optimization,"
Proc. JACC, Troy, N.Y. 1965.

[50] G. Cohen, "Optimization by decomposition and coordination: a unified
approach," IEEE Trans. Automat. Contr., vol. AC-23, no. 2, pp.
222-232, Apr. 1978.

[51] M. R. Javdan and R. J. Richards, "Decentralized control systems theory:
a critical evaluation," Int. J. Control, vol. 26, no. 1, pp. 129-144,
1977.

131

[521 R. Bellman, Dynamic Programming, Princeton, NJ: Princeton Univ. Press,
1957.

[531 C. Y. Chong, P. L. McEntire, and R. E. Larson, "Decomposition of
mathematical programming by dynamic programming," Proc. 2nd Lawrence
Symp. Syst. and Decision Sci., Oct. 1978.

(54) T. B. Cline and R. E. Larson, "Decision and control in large-scale

systems via spatial dynamic programming," Proc. 1st Lawrence Symp.
Syst. and Decision Sci., Oct. 1977.

[55) P. L. McEntire, C. Y. Chong and R. E. Larson, "A global optimality
theorem for spatial dynamic programming," Prac. 2nd Lawrence Symp.
Syst. and Decision Sci., Oct. 1978.

[56] B. Friedlander, "A decentralized strategy for resource allocation,"
IEEE Trans. Automat. Contr. vol. AC-27, no. 1, pp. 260-265, Feb. 1982.

[57] D. P. Bertsekas, "Distributed dynamic programming," Proc. 20th IEEE
Conf. on Decision and Control, 1981.

[58] J. M. McQuillan, G. Falk and I. Richer, "A review of the development
and performance of the ARPANET routing algorithm," IEEE Trans.
on Comm., vol. COM-26, no. 12, pp. 1802-1810, Dec. 1978.

[59] R. Lau, R. C. M. Persiano and P. P. Varaiya, "Decentralized information
and control: a network flow example," IEEE Trans. Automat. Contr.,
vol. AC-17, no. 4, pp. 466-473, Aug. 1972.

[60] A. Gersho and B. J. Karafin, "Mutual synchronization of geographically
separated oscillators," Bell Syst. Tech. J., vol. 45, no. 10, pp.
1689-1704, 1966.

[61) I. W. Sandberg, "On conditions under which it is possible to synchronize
digital transmission systems," Bell Syst. Tech. J., vol. 48, no. 6,
pp. 1999-2020, 1969.

[621 D. C. Cantor and M. Cerla, "Optimal routing in a packet-switched computer
* network," IEEE Trans. on Computers, vol. C-23, no. 10, pp. 1062-1069,

Oct. 1974.

[63] F. E. Heart, R. E. Kahn, S. M. Ornstein, W. R. Crowther, and D. C.
Walden, "The interface message processor for the ARPA Computer
Network," Conf. Rec., Spring Joint Comput. Conf., AFIPS Conf.

* Proc., 1970, pp. 551-566.

[64] J. McQuillan, I. Richer and E. Rosen, "The new routing algorithm for

the ARPANET," IEEE Trans. Commun., vol. COM-28, pp. 711-719, 1980.

[65] J. M. Abram, "Some shortest-path algorithms with decentralized informa-
• tion and communication requirements," Doctoral Dissertation,

Washington University. St. Louis, 1981.

132

[661 J. M. Abram and I. B. Rhodes, "Some shortest-path algorithms with
decentralized information and communication requirements," to appear
in IEEE Trans. Automat. Contr.

[67] P. M. Merlin and A. Segall, "A failsafe distributed routing protocol,"
* . IEEE Trans. on Comm., vol. COM-27, no. 9, pp. 1280-1287, Sept. 1979.

- [68] R. E. Kahn, "Resource-sharing computer communication networks,"
Proc. IEEE, vol. 60, pp. 1397-1407, Nov. 1972.

169] M. Schwartz and T. E. Stern, "Routing techniques used in computer
communication networks," IEEE Trans. Commun., vol. COM-28, pp. 539-552,
Apr. 1980

[70] R. G. Gallager, "A minimum delay routing algorithm using distributed
computation," IEEE Trans. on Comm., vol.COM-25, no. 1, pp. 73-85,
Jan. 1977.

- [71] D. P. Bertsekas, E. Gafni and K. S. Vastola, "Validation of aliorithms
for optimal routing of flows in networks," Proc. 17th IEEE Conf. on Decision
and Control, 1978.

[72] D. P. Bertsekas, "Algorithms for optimal routing of flow in networks,"
Coordinated Science Lab., Working Paper, Univ. Illinois, Urbana, ILL,
June, 1978.

[73] J. S. Meditch and J. C. Mandojana, "A decentralized algorithm for
optimal routing in data-communication networks," Proc. 18th IEEE Conf.
on Decision and Control, 1979.

[74] T. E. Stern, "A class of decentralized routing algorithms using
relaxation," IEEE Trans. Coiunun., vol. COM-25, 1, pp. 1092-10, Oct. 1977.

[75] A. Segall, "The modeling of adaptive routing in data-communication net-
works," IEEE Trans. on Comm., vol. COM-25, no. 1, pp. 85-95, Jan. 1977.

[76] J. S. Meditch and F. D. Gorecki, "Minimum hop flow assignment and
routing in computer-communication networks," Proc. 19th IEEE Conf. on
Decision and Control, 1980.

* [77] J. S. Meditch and F. D. Gorecki, "A distributed minimum hop routing
algorithm," Proc. 20th IEEE Conf. on Decision and Control, 1981.

[78] C. M. Heal, Planning without prices," Rev. Econ. Studies, vol. 36,
pp. 347-362, 1963.

[79] Y. C. Ho, L. Servi and R. Suri, "A class of center-free resource alloca-
tion algorithms," J. Large-Scale Syst., vol. 1,
Fcb. 1980.

[80] L. D. Servi, "Electrical networks and resource allocation algorithms,"
* IEEE Trans. Syst., Man., Cybern., vol. SMC-10, no. 12, pp. 841-848,

Dec. 1980.

133

[811 K. J. Astrom, Introduction to Stochastic Control Theory. New York,
NY: Academic Press, 1970.

[82] H. S. Wicsenhausen, "Separation of estimation and control for discrete
*i time systems," Proc. IEEE, vol. 59, pp. 1557-1566, 1971.

control problems." IEEE Trans. Automat. Contr., vol. AC-20, no. 6 t.

pp. 796-797, Ec. 1975.

[84] H. S. Witsenhausen, "A counterexample in stochastic optimum control,"
SIAM Journ. Control, vol. 6, pp. 131-147, 1968.

185] I. B. Rhodes and D. G. Luenberger, "Stochastic differential games with
constrained state estimators," IEEE Trans. Automat. Contr., vol.
AC-14, no. 5, pp. 476-481, Oct. 1969.

[86] W. Willman, "Formal solutions for a class of stochastic pursuit-
evasion games," IEEE Trans. Automat. Contr., vol. AC-14, no. 5, pp.
504-509, Oct., 1969.

[87] C. Y. Chong and M. Athans, "On the stochastic control of linear systems

with different information sets," IEEE Trans. Automat. Contr.,
vol. AC-16, no.5, pp. 423-430, Oct. 1971.

188] A. Segall and N. R. Sandell, Jr., "Dynamic file assignment in a computer
network--part II, decentralized control," IEEE Trans. Automat. Contr.,
vol. AC-24, no. 5, pp. 709-715, Oct. 1979.

[89] F. C. Schoute, "Syrunetric team problems and multi access wire communica-
tion," Automatica, vol. 14, pp. 255-269, 1978.

[901 F. C. Schoute, "Decentralized control in packet switched satellite
communication," IEEE Trans. Automat. Contr., vol. AC-23, no. 2, pp.
362-371, Apr. 1978.

[91] P. Varaiya and J. Walrand, "Decentralized control in packet switched
* satellite communication," IEEE Trans. Automat. Contr., vol. AC-24

no. 5, pp. 794-796, Oct. 1979.

[92] B. Hajek, "Dynamic decentralized estimation and control in a multi-
access broadcast channel," Proc. 19th IEEE Conf. on Decision and
Control, 1980.

[93] J. W. Grizzle, S. I. Marcus and K. Hsu, "Decentralized control of a
multiaccess broadcast network," Proc. 20th IEEE Conf. on Decision and
Control, 1981.

a
[94] M. D. Meserovic, D. Macko and Y. Takahara, Theory of Hierarchical

Multilevel Systems, New York, NY: Academic Press, 1970.

134
6

[95] M. G. Singh, Dynamical Hierarchical Control, Amsterdam, The Netherlands:
North-Holland, 1977.

[961 M. G. Singh and A. Titli, Systems: Decomposition, Optimization and
Control, Oxford: Pergamon, 1978

[97] W. Findeisen, F. N. Bailey, M. Brdys, K. Malinowski, P. Tatjewoki and
A. Wozniak, Control and Coordination in Hierarchical Systems,
New York, NY: Wiley, 1980.

[98] M. S. Mahmoud, "Multilevel systems control and application: a survey,"
IEEE Trans. Syst., Man and Cybern., vol. SMC-7, no. 3, pp. 125-143.
Mar. 1977.

[99] W. Findeisen et al., "On-line hierarchical control for steady-state
systems," IEEE Trans. Automat. Conts., vol. AC-23, no. 2, pp. 189-209,
Apr. 1978

[100] C. Y. Chong and M. Athans, "On the periodic coordination of linear
stochastic systems," Automatica, vol. 12, July 1976.

(101] J. B. Cruz, Jr., "Decentralized multicriteria optimization of linear
stochastic systems," IEEE Trans. Automat. Contr., vol. AC-23, no. 2,
pp. 244-255, Apr. 1978.

[102) T. Basar and H. Selbuz, "Closed-loop Stackelberg strategies with applica-
tions in the optimal control of multilevel systems," IEEE Trans. Automat.
Contr., vol. AC-24, no. 2, pp. 166-179, Apr. 1979.

[103] C. Y. Chong, "Some notions of decentralization and coordination in
large-scale dynamic systems," Large-Scale Dynamic Systems - A Seminar
Workshop held at Utah State University, Logan, Utah, 1974, NASA-SP371

[104] R. R. Tenney and N. R. Sandell, Jr., "Structures for distributed decision
making," IEEE Trans. Syst., Man., Cybern., vol. SMC-II, no. 8,pp.
517-527, Aug. 1981.

[105) R. R. Tenney and N. R. Sandell, Jr., "Strategies for distributed
decision making," IEEE Trans. Syst., Man., Cybern., vol. SMC-II,
no. 8, pp. 527-538, Aug. 1981.

[106] H. K. Khalil and P. V. Kokotovic, "Control strategies for decision
makers using different models of the same system," IEEE Trans.
Automat. Contr. vol. AC-23, no. 2, pp. 289-298, Apr. 1978.

[107] Nils J. Nilsson, Principles of Artificial Intelligence (Tioga
* Publishing Company, 1980).

(108] Edward A. Feigenbaum, "The Art of Artificial Intelligence: Themes
and Case Studies of Knowledge Engineering," Proceedings IJCAI-77
(1977).

135

* '12

. .7 "

[109] Robert Lindsay, Bruce G. Buchanan, Edward A. Feigenbaum, and
Joshua Lederberg, DENDRAL (1981).

[110] Edward H. Shortliffe and Bruce G. Buchanan, "A Model of Inexact
Reasoning in Medicine," Mathematical Biosciences, 23 (1975).

[111] Richard M. Tong, "Some Properties of Fuzzy Feedback Systems,"
IEEE Trans. on Systems, Man, and Cybernetics, SMC-10, 6 (1980).

(112] Richard M. Tong and P.P. Bonissone, "A Linguistic Approach to Decision

Making with Fuzzy Sets," IEEE Trans. on Systems, Man, and Cybernetics,
SMC-10, 11 (1980).

[113] Robert Wesson, Problem Solving with Simulation in the World of an
Air Traffic Controller, Ph.D. thesis (University of Texas at Austin,
1977).

qm
[114] Lee D. Erman and Victor R. Lesser, "A Multilevel Organization for

Problem Solving Using Many Diverse Cooperating Sources of Knowledge,"
Proceedings IJCAI-75 (1975).

1115] Robert J. Drazovich and Scottie Brooks, "Surveillance Integration
Automation Project (SLAP), "Distributed Sensor Nets: Proceedings
of a Workshop (Carnegie-Mellon University, December 1978).

[116) Cordell Green and Brian P. McCune, "Application of Knowledge Based
Programming to Signal Understanding Systems," Distributed Sensor
Nets: Proceedings of a Workshop (Carnegie-Mellon University, p
December 1978).

[1171 Douglas B. Lenat, "BEINGS: Knowledge as Interacting Experts,"
Proceedings IJCAI-75 (1975).

[118] Richard D. Fennell and Victor R. Lesser, "Parallelism in AI Problem
Solving: A Case Study of HEARSAY-II," IEEE Transactions on
Computers, C-26,2 (February 1977).

[119] G.G. Hendrix, E.D. Sacerdoti, D. Sagalowicz, and J. Slocum,
"Developing a Natural Language Interface to Complex Data,"
ACM Transactions on Data Base Systems, 3, 2 (June 1978).

[1201 Randy Davis, "Report on the Workshop on Distributed Al," SIGART
Newsletter, 73 (October 1980).

[121] Reid G. Smith and Randall Davis, "Distributed Problem Solving:
The Contract Net Approach," Proceedings of the 2nd National
Conference of the Canadian Society for Computational Studies of
Intelligence, Toronto, Canada, July 1978.

[122] Reid G. Smith and Randall Davis, "Applications of the Contract
Net Framework: Distributed Sensing," Distributed Sensor Nets:
Proceedings of a Workshop (Carnegie-Mellon University, December 1978).

136

"" [123] Information Processing Techniques Office, Defense Advanced
Research Projects Agency, Distributed Sensor Nets: Proceedings
of a Workshop (Carnegie-Mellon University, December 1978).

[1241 Victor R. Lesser and Daniel D. Corkill, "Functionally Accurate
Distributed Problem Solving Systems," Distributed Sensor Nets:
Proceedings of a Workshop (Carnegie-Mellon University, December
1978).

[1251 Victor R. Lesser and Daniel D. Corkill, "Distributed Interpretation
Testbed," in Report on the Second Workshop on Distributed AI, edited
by Randy Davis, SIGART Newsletter, 80 (April 1982).

[126] Victor R. Lesser and Daniel D. Corkill, "Functionally Accurate,
Cooperative Distributed Systems," special issue on distributed
problem solving, IEEE Transactions on Systems, Man and Cybernetics
(1981).

[127] Carl Hewitt and Bill Kornfeld, "Message Passing Semantics," SIGART
Newsletter, 73 (October 1980).

[128] R. Wesson and F. Hayes-Roth, "Network Structures for Distributed
Situation Assessment," Report R-2560-ARPA (Rand Corporation,
August 1980).

(1291 Victor R. Lesser and Lee D. Erman, "An Experiment in Distributed
Interpretation," special issue on distributed processing, IEEE
Transactions on Computers (December 1980).

[130] "Working Papers in Distributed Computation," Distributed Communication
Group, University of Massachusetts (June 1981).

[131] R. Steeb, S. Commarata, F. Hayes-Roth, and R. Wesson, "Distributed
Intelligence for Air Fleet Control," R-2728-ARPA (Rand Corporation,
1981).

[132] Randy Davis, "Models of Problem Solving: Why Cooperate?" SIGART
Newsletter, 73 (October 1980).

[133] Frederick Hayes-Roth, "Towards a Framework for Distributed AI,"-
SIGART Newsletter, 73 (October 1980).

[134] Richard Fikes, "A Commitment-based Framework for Describing Informal
Cooperative Work," Xerox Palo Alto Research Center (June 1981).

[135] Carl Hewitt, "The APIARY Network Architecture for Knowledgeable
Systems," Proceedings, LISP Conference (Stanford University, August

1980).

[136] Eugene Ball and Phil Hayes, "Representation of Task-Specific
Knowledge in a Gracefully Interacting User Interface," Proceedings
of the 1st Annual National Conference on Artificial Intelligence
(Stanford University, August 1980).

137
It

K 4 4

[137] D. Gorlin, F. Hayes-Roth, S. Rosenschein, and H. Sowizral, "The
ROSIE Language Reference Manual," Technical Report (Rand Corporation,
1980).

[138] J.A. Feldman and K.R. Sloan, Jr., "Progress at the Rochester Image
Understanding Project," Proceedings: Image Understanding Workshop
(University of Maryland, April 1980).

(1391 A. Rosenfeld, "Iterative Methods in Image Analysis," Pattern
Recognition, 10 (1978).

[140] Lee D. Erman and Victor R. Lesser, "A Multilevel Organization
for Problem Solving Using Many Diverse Cooperating Sources of
Knowledge," Proceedings IJCAI-75 (1975).

[141] Richard P. Wishner, Robert J. Drazovich, and Chee-Yee Chong,
"Distributed Hypothesis Formation in Distributed Sensor Networks,"
Proposal 8021 (Advanced Information & Decision Systems, April 1980).

[142] Robert J. Drazovich, Brian P. McCune, and Bruce G. Buchanan,
"Characteristics of Hypothesis Formation Systems," Technical Report
(Advanced Information & Decision Systems, 1981) (in press).

[143] Carl Hewitt "Viewing Control Structures as Patterns of Passing
Messages," Artificial Intelligence 8 (1977), 323-364.

[144] William A. Kornfield "The Use of Parallelism to Implement a Heuristic
Search," A.I. Memo No. 627, MIT AI Laboratory (March 1981).

[1451 William A. Kornfield and Carl E. Hewitt, "The Scientific Community
Metaphor," IEEE Transactions on Systems, Man, and Cybernetics,
Vol. SMC-11, No-I (January 1981).

[146] James F. Allen and Steven L. Small "The Rochester Discourse
Comprehension Project" in Report on the Second Workshop on Distributed
AI, edited by Randy Davis, SIGART Newsletter, 80 (April 1982).

[147] Randy Davis, Dan Brotsky, and Judy Zinnikas "Teamwork in Multi-Agent
Planning; Distribution as an Approach to Complexity" in Report on

4the Second Workshop on Distributed AI, edited by Randy Davis,
SIGART Newsletter, 80 (April 1982).

[148] Kurt Konolige and Nils Nilsson, "Multiple Agent Planning Systems,"
Proceedings AAAI, Stanford, CA, 1980.

[149] Douglas E. Appelt, "A Planner for Reasoning about Knowledge and
Action," Proceedings of the First Annual National Conference on
Artificial Intelligence, 1980.

[150] James Allen and C.R. Perrault, "Participating in Dialogues:
Understanding Via Plan Deduction," Proceedings of the Second

4 National Conference of the Canadian Society for Computational
Studies of Intelligence, 1978.

138

*

[151] Philip Cohen and C.R. Perrault, "Elements of a Plan Based Theory
of Speech Acts," Cognitive Science, vol. 3, pp. 177-212, 1979.

[152] C. Alexander, Notes on the Synthesis of Form, Cambridge, MA:
Harvard University Press, 1964.

[153] T.L. Saaty, The Analytic Hierarchy Process, New York, NY: McGraw-
Hill, 1980.

[154] M. Schwartz, Computer Communication Network Design and Analysis,
Princeton, NJ: Prentice-Hall, 1977.

[155] E. Tse, "An Interactive Approach to Dynamic Sequence Assignment,"
AI&DS Technical Memo (under preparation).

[156] R.M. Tong, et. al., "Options Generation Techniques for Command
and Control," Final Report for Project 3012, AI&DS, 1982.

[157] S. Mori and E. Tse, "Theory of Bargaining: A Game Theoretical
Approach," Proceedings 1982 American Control Conference, Arlington,
VA.

139

. .. I

Appendix

A DISTRIBUTED RESOURCE ALLOCATION
ALGORITHM BASED ON EXTENDED MARGINAL ANALYSIS

140

a

1. INTRODUCTION

Marginal analysis is commonly applied to resource allocation problems

, with separable return functions. However, in many applications, the

return function is nonseparable, and thus the classical marginal analysis

is not applicable. In this section, we shall extend the marginal

analysis to a certain case where the return function is nonseparable.

A set of necessary and sufficient conditions for optimal allocation

is given. The analysis easily lends itself to distributed implementation.

2. PROBLEM STATEMENT

The allocation problem is given as follows:

max J fi(xi;yjgj Si)

n

s.t. + y = R
i=l j-k 3 (P)

xiy 1EI+ = {,l,2, .. _

Sc{1,,...,s}
i

where f has the following properties:

(a) fi(O;yjJCS i) - 0 for all yjeI+

(b) f is nondecreasing in each component while holding the

rest of the components fixed

(c) For all i-i n (xi > O,y t > O,y , > 0)

f (xi+l;yj,JcSi) + fi(xi-l;yj,JE$i) < 2fi(xi;yjJESi)

f i(x i+ l;y t - I'yijes i - t) + f i(x i- l;y t + l ,y j ,J cS , - t) 2f,(x i;Yj,jcsi);VtcS i

f fi(xl;Yt +l1,yj,Jcs i - t)+ fi(xi;Yt - I'yjdes i - t) < 2f i(x i;Yj,JES i)VtcS i

fi(xi;yt+ l,yt, - 1,JCSi- {t,t')+fi(xj;yt- lyt, + 'jCS i - {tt'))

,<2f i(x i;Yi;JCSi) V t,tESi

6 Note that this corresponds to "concavity" of fi.

141

6i

Note that (P) is more general than the usual resource
al'-cation

problem where the return function is separable. One class of problems

that has the above formulation is in mission planning where
we are to

allocate R resource units to n targets which are defended by s defense

sites. Si represents the subset of defense sites that
can "protect"

target i. The function f,(xi;y ,JESi) represents the probability
of

destroying the it
h target, and its functional form implies that the

success of destroying target i depends on (1) allocation of xi units

to target i and (2) allocation of yj units to those defense
sites

which protect target i.

3. A TRADING MODEL

Let us define a concept of price which will be utilized in the later

discussions. For a given allocation {xil,{yj}, define for xi > 0

X(xi;Y.,i)ezs fi(xi;Yjjcsi) - fi(xi- ;yjJiSi)

and for yj>O, G {ijcS}, yJ {Y 'YJ-'YJ+''..'Y s}

S(YJ'Y ;xiicGj) {fi(xi;Yx'£CSi) - fi(xi;Yj-l y x' SI- J) }

ieGj

For completeness, we define X1(0;.) -.o, P (O,yJ;.) = 0.

Note that A is equal to the marginal decrease (in absolute value) in

return if one resource unit is taken away from the i
th target from its

nominal allocation. Now if we imagine that there are n agents, each of

them controlling resource units {x I} assigned to the i target, then for agent

i to give up one resource unit, he must charge a price equal to the

marginal decrease in return due to the reduction of one resource unit. Therefore,

one can interpret X as the "selling price" for one resource unit asked

by agent i who controls xi .

Similarly, if we imagine that there are s agents controlling

the resource units {yjl assigned to the jth defense site, then P- has

the interpretation of "selling price" for one resource unit asked by the

a7ent controlling yj*

142

4l

Analogous to the concept of selling price, we have a concept of "buying"

price." Define

A (x;yj S f (xi + I.; yj si) - fixi;yjcsi),

This has the interpretation of the buying price that the agent controlling

xi is willing to pay for an additional resource unit from an outside

source. Similarly, one can define

j(YjY ;xi!i i G i { i+lY£,£Si- - fi(xi;y£,£Si)}

o .

With the above notion of prices, we have easily the following

properties:

(I) xi (xi;YjjS i) = X+(xi - I; yjJESi

(2) Ai(xi;YjjiESi) >. .X(xi;Yj ,ESi) [from property (c)]

(3) p-(yjy; = p+(y. - l,y3;xi,iEG

(4) p.(y3y ;x E + ""(y ieG) [from (c)]

Properties (1) and (3) come from our definition and the implication of

properties (2) and (4) is that at each agent, the selling price for one

unit resource is greater than the buying price for one unit resource.

With the above concept, we can investigate the"trading" pattern among

agents, where the result of a trading yields a better overall performance;

i.e., J increases. Let us divide the agents into two groups: X-group and Y- I
group. The X-group controls the resource units allocated to the targets and the

Y-group controls the resource units allocated to the defenses. We have the

following trading patterns:

143
I

K. (1) agents in X-group trade among themselves

(2) agents in Y-group trade among themselves

(3) agents in X-group trade with agents in Y-group

We can also have hierarchical trading patterns as illustrated in Fig. 1.

Trade between

X (as a unit) and Y (as a unit)

/R RX y

Trade among Trade among
X-group Y-group

Figure A-1 Hierarchical Trading Pattern

4. TRADING EQUILIBRIUM AND OPTIMAL ALLOCATION

In this section we shall investigate the above trading patterns, and

relate the concept of trading equilibrium to optimal allocation.

Theorem 1: Let fx ,f{yI be a given feasible allocation. Assume now trading

takes place among X-group with {yj} remaining the same. If there exist some i,i'

such that

i+(xi;YjJcSi > , ,x1yjj(-

II

then trading will take place between agents i and i' where at least one

resource unit will be transferred from i' to i.

4

144

4

. . .. - A

1

Proof: Equation (1) implies that

fi(xi + 1; Yj JESi) - fi(xi;YjJeSi) > fi#(xi,;yjJiS± - fi,(xi,-;yjsJSi.

and thus for the new allocation {xo My I where

0 0
x -x +1 ; i x

we have

n n
~fi(xi;yjo ,CSi > Fa fi(xi;YjJCSi' '

Jul

and thus trading will take place between agents i and i' which results in

a better overall performance.

Consider the situation where {yj) is held fixed, then trading among

agents in group X continues as long as (1) is satisfied for some i, i';

and every time a unit resource transaction is completed, the overall

performance is improved. The trading sequence will result in a final

allocation where no more trading will take place. We shall call such an

allocation an equilibrium allocation among the X-group while {yjI is

held fixed.

Theorem 2: Let {y4I be given with 1 Yj < R. The equilibrium allocation
J-1

among the X-group, {XI is characterized by

+ $. i - l,...,n(2
A +(x ;Yj, cs) A- i,';yj, €$1,) it= 1,....,n (2)

i & i'

Moreover, Ix I solves the optimization problem

n

max J = fi(xi;YjJiSi)

n st P(y)
n a

s.t. Xxi _ R - , Yj ;xi I +

i-l J-1

145
I

K. Proof: From theorem 1, we see that (2) must be satisfied if no trading occurs.

All we need to establish is that if (2) is satisfied, then no trading occurs. r
Let us consider an allocation {xol,{yil where

0
x~ x~ + ki k 0 1

One can imagine {xo} as the resulting allocation, as deviated from x if
i

a trade has occurred among agents in X-group who are having initial allocation

{x i . For any i, ki can either be positive or negative. Suppose ki > 0, then

fi(xi;YjiJiSi) - fi(xi + ki; YjjCS

: .. ~k-1 +.."

- Xix+Y;yj,JcSi) + fi(Ai ;yj,jcSi) (3)

By the first inequality in assumption (c), we have

1 1

or for all xi> 0

.(x i- l;yjjCSd i) N ixi;YjjcS i)

I,.

which implies that Xi(xi;-) is decreasing in xi. Using this fact, (3)

becomes

o. N , +ic +fSx)_j

fixYi'yjt kili(i;Yj cSi) + (;x)

If k1 < 0, then usin the similar argument, we have

fi ;;YYj S + f (t ;YjjiES

kjx (x i;y j l j cSi) + fi(2 i;y j , j eS) (4)

Let i m X Xi(xi;YjJ iSi), then (1),(3) and (4) gives

146
i.

f (Xl;Yj,JSi) ki H + fi(ti;Yj,JeSi) (5)

since kI = 0, thus

n n

Sf(x0 yidCsl f (O ;y,jeS) (6)

and therefore no incentive for such trading to occur. Note also that (6)

implies xI is an optimal allocation for P(y).

Next, we shall consider trading among agents in Y-group. We shall

* say that J and J' are related if Gf Gil 0; otherwise they are unrelated.

Theorem 3: Let {x },fy} be a feasible allocation. Assume trading takes

place among agents in Y-group with {xi) remaining the same. If J, J' are

related and if (y ={yi,...,ys}-{-y V})

P +(yi Py -l,y(iJ' ');xi9'iCG) > P I (yj Iy ';xiticG (7)

then trading occurs between j and J' where at least one resource unit is

transferred from agent J' to agent J. On the other hand, if J, J' are

unrelated, trading occurs by transferring one unit from J' to j if we

have
0

P +(yi'y J;xioicG) > P-,(y IyJit;xi~ieGil) (7')

Proof: The unrelated case is similar to the case of trading in X-group and

the proof is similiar to that for Theorem 1. Therefore we shall concentrate

only on the related case.

147
0,

Let us partition the set I {1,2 n) into Gfn Ga, G IG~
n

GiIG and I nIG U G .* If J, J' are related, G nGlis nonempty.

Consider a new allocation {y~j with

0 0
yi -y +- ;y i y, r Y 0J

For icG flG we have

fi~xicts i) - f(x i;y +.i wl ygtc S i-fj.j}))

f f(x ;y +1, Yjrl. Yp'tcSc-{i.i'1)

- f i(x i;yjllYtlkEsi') + fi(x;y jI-1ly9"kesc-i')

- f i(x i;Yjcs i + f i(x i;YjicS) (8)

* for icG IG~1 we have

f 1(Nxi;yz 'Les i) f 1(x ±;y i+l~yZ.ZESi-i)- f(Xi;ytZE~Si)

+ f (xi ytLES (9

* for iCCGij* *we have

+ f i(x i;yttc S 1) (10)

and for ic n UG~ we have

00

t AI {acAjaOB1

148

-

Combining (8)-(11) and using the price definitions, we have

n (xn + OJ ') iie
o~~y9E pj (yj ,yj,-l~y(J ;i j1 ft(xi;y%, tcSi) - .-(jy,~~~l);ii%

n
Pj-(yj,,yi ;xicGj,) + fi(xi;yg.kSi) (12)

therefore if (7) is true, trading will occur between J' and j which results

in a better allocation.

We can define equilibrium allocation among Y-group as we did for X- p
group.

n

Theorem 4: Let {x be given with F xi< R. The equilibrium allocationi-l"

among the Y-group, {9}, is characterized by

p +(y ,j9 , '-,9(l'i);x 11ieGj) jfpj(9 jJ;xiIieGj) (13)

if j and J' are related, and
I

pj(j,'Y;xi~iG) '< P,(9yi y';xi,iCGJ,) (13')

if j and J' are unrelated. Moreover {9j} solves

n
max 1f (xi;yjJCSi)

P(x)
a n

s.t. yj. R - x YjI+

j=l iml

S

Proof: The proof is similar to that for Theorem 2 while utilizing (8), (9),(10),
(11) and the third and fourth inequalities in assumption (c); but algebrically is

more complicated because of the "relationship" among the agents in Y-group.

149

Finally, we shall consider trading between agents in X and Y groups.

We shall say that an agent i in X-group and an agent j in Y-group are

dependent if JeS i (or equivalently ieGj).

Theorem 5: Let {xi},{yj} be a feasible allocation. If i in X-group and

j in Y-group are dependent, and if

P+ (yp YJ' -1,x t cG i) > xi(xi;Y ,9CS (14)

trading occurs between these two agents with at least one resource

unit being transferred from i to J; and if

X (xi;Yj-l~y,kESi-J) > P (YrIyJ;xtc%) (15) i!

then trading occurs wirh at least one resource unit being transferred

from j to i.

If, however ad j are not dependent, then trading occurs with

at least one unit g tr --.ferred from i to j if

+(y > Xi(x;y 1 CSi) (14')

and one unit being --ed from j to i if

(xj > p(y,y ;xt.tEGj) (15')

Proof: This proof is =imilar to those for Theorem 1 and Theorem 3. In the proof,

the second inequality in assumption (c) is utilized.

We shall say that a certain allocation {xi},{yjI is in global equilibrium

if there is no incentive for any agents, either in X or Y group, to trade

with each other.

150
•

* Theorem 6: A global equilibrium allocation {x*},{y*} is characterized by

the following conditions

+ * *If-,
i(l,...,n

(2) p ~y *1y-1y*(;xi &Gj) < J Jfy o ,x ieiG j)

for all (J,j') which are related

• , ~~+. *j*-• *',P (Y-Y ;xii,ieGj) < jI,(y,, ;xliGj,)

for all (J,J') which are not related

(C*+ * * *t* *
(3) Pj(Y*,Y* ;xi-lxteG ji) (xi;y,,LeSi); VicGi, J - 1

*I.j ,xtitEGj) .< *t~ ;y ,Vci 4 Gj, j -1..s-

+ It *

(xi;Y -l'yRVtCS-J) , Y*;xt eGj) VjES i, i i 1....n

+ **J
xi(xi; y1,£cS) < t (y,y ;xt,tcGj) Vi4Si, i = 1, n

Moreover, if {x},{y*} is a global equilibrium allocation, it also

solves (P.).

Ig Proof: This comes directly from combination of Theorem 1 to Theorem 5.

C* is the necessary and sufficient condition for both the global

equilibrium allocation for the trading problem and the optimal solution for

the allocation problem (P). An interesting interpretation of C* is possible.

151I'

Let us interpret

P+(y4,y 1,y(ijl);xsG4) - buying price j will offer for one
additional resource from a related
agent j' in Y-group

P (y ;X1,xt,xtcG -i) -- buying price j will offer for one
i t t j additional resource from a dependent

agent i in group X

S(Xi;yJ-l,y£,£cSi-j -- buying price that agent i in X-group
will offer for one additional resource
from a dependent agent j in group G

Then each agent has a selling price for one unit of resource; but dependent

on where he buys hiq -7-ource, has different buying prices for one more

unit of ;:esource. The global equilibrium is achieved when all the buying

prices ea. -,eat is willing to 4 ,, is lower than all the selling prices

offered by the agents.

5. A DISTRIBUTED ALGORITHM

In this section, we shall describe a distributed algorithm based on

Theorem 6. The algorithm is based on a sequence of "distributed trading"

which leads to the trading equilibrium. Each tradi ycle consists of

two phases:

Phase 1: information exchange

Phase 2: unit resource trading

The purpose of Phase I is for ea-' trading agent to compute his

selling price and his set of buying prices (from different agents) for

additional resources; in Phase 2, tradir is to be carried out among

agents in a distributed manne- ,uch . . J is increased.

Phase 1: Infc--'ation Exchange

let us assume that, in orO& to evaluate

{fi(Xi4a;yj+,JS a= ,Ol; -i,0,i

information exchange between agents i in X-group and j in Y-group (jCS i)

152

S

must be carried out; which will, in turn, determine

x+ (J,JeS) +(;yj-l~y£,£CS, 9vjCSi

and

x Ai(x;i ;Y,jeSi).

After

{fi(xi4;Yj+ ,jeSi)} c = -1,0,1; 8-,0,l

are determined for all i = 1,...n; then

+ . + (.-v1.xiJ')ij ~), pj(yj yj -,y
iG

0j YYJ~i , xieG

and

P (Y.,y ;x ,ieG.)

are determined for each agent j in Y-group.

Phase 2: Unit Resource Trading

We shall distinguish between three trading patterns:

(a) Trading among X-group

(b) Trading among Y-group

(c) Trading between X and Y groups

To describe how trading is to be carried out, we need to specify the set

of agents that each agent is allowed to trade with. For trading pattern (a),

each agent in X-group is allowed to trade with any one or more agents in

X-group. For trading pattern (b), each agent in Y-group is allowed to

trade with all related agents and one or more unrelated agents in Y-group.

For trading pattern (c), each agent in X-group is allowed to trade with

all its dependent agents and one or more independent agents in Y-group.

From Phase 1, selling and buying (dependent on agent to buy from)

prices are computed; ihen depending on the trading pattern each agent

trades with the allowable trading agent for one unit of resource. The

trading is to be carried out in the following sequence.

(1) Each agent determines, from the set of allowable trading

agents, a subset of agents who offer a buying price higher
than the agent's selling price (denote this subset as a list

0 of buyers). An agent with a nonempty list of buyers is
denoted as a selling agent.

153

I ..

77a

(2) Each selling agent goes through his list of buyers and offers to
the highest "bidder" a unit of resource at his selling price.

(3) A "buyer" who receives multiple offers chooses to receive
one unit of resource from the seller who has the lowest

selling price.

(4) Those selling agents whose offers are not accepted will form
new lists by deleting the buyer who offered the highest price
but chose to buy from other selling agents; these will be
the new set of selling agents.

(5) If the set of selling agents is empty, Phase 2 is terminated,
otherwise go back to (2) and iterate.

With the imposed "concavity conditions", one can show that successively

iterating between Phase 1 and 2 will yield a sequence of monotonic

improving resource allocations that will converge to the optimal allocation.

p

'54

